Novel antiviral strategy offering forward capability and reduced risk of escape
新颖的抗病毒策略提供前进能力并降低逃逸风险
基本信息
- 批准号:10593778
- 负责人:
- 金额:$ 29.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-04 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AffinityAntibodiesAntibody TherapyAntigen TargetingAreaAvidityBindingCapsidCellsCompensationCoronavirusCrosslinkerDNADetectionDevelopmentDiagnosticDiseaseEbola virusEngineeringEnsureEpitopesEscape MutantEscherichia coliEvolutionExhibitsFamilyFelis catusFoundationsFutureGenerationsGenesGlycosaminoglycansGoalsHealthHumanImmune systemIn VitroIndividualInfectionInfluenza vaccinationInterventionIntrabodyMammalian CellMediatingModelingMonitorMusMutationNatureNucleoproteinsParentsPenetrationPeptidesPharmaceutical PreparationsPlasmidsPolymersPredispositionProcessProteinsRNA VirusesRNA vaccineReagentResearchResourcesRiskSeasonsSiteSmall Interfering RNASpecificityStructural ProteinSurfaceSystemTechnologyTestingTherapeutic antibodiesTimeTransfectionViralViral GenomeViral Hemorrhagic FeversViral PhysiologyViral ProteinsViral Structural ProteinsVirionVirusVirus AssemblyVirus CultivationVirus ReplicationVirus-like particleWorkcoronavirus pandemiccrosslinkdesigndimerenv Gene Productsexpression vectorhuman diseaseinterestmembermonomermutantnanobodiesneutralizing antibodynonhuman primatenovelnovel coronavirusnovel strategiesparticlepathogenic viruspreferenceprotein oligomerstoichiometrysuccesstissue culturevariants of concern
项目摘要
ABSTRACT
The current coronavirus (CoV) pandemic, seasonal infections by other CoV and other “cold” viruses,
plus the need for annual influenza vaccinations exemplify the challenges posed by viral antigenic drift and shift.
Targeting landscapes of viral structural proteins displayed on the surfaces of virus particles and or the surfaces
of infected cells has been the primary basis for developing antibody-based therapeutics. Although great
advances have been made in trying to identify regions of these surface displayed proteins that are conserved
and less prone to “escape” antibody binding, it appears to be a continual battle of cat and mouse as we are
seeing with continual emergence of CoV “Variants of Concern”. In contrast, viral structural proteins that remain
inside virus particles and cells, avoid the impact of cyclical antibody selection, and tend to be far more
conserved. Oligomeric assemblies of these proteins can also blunt the impact of antiviral escape mutations
owing to the mix of mutant and wild-type monomers present in the parent cell. Furthermore, the stoichiometry
required of an antiviral to impede oligomer function need not be necessarily 1 antiviral to 1 monomer since,
especially if the antiviral were a crosslinker, its impact would be relayed beyond the immediate contact to
neighboring oligomers. Our long-term hypothesis is that affinity reagents capable of binding an internal
oligomeric structural protein of all species of a viral genus uniformly will impede viral assembly when present
as dimeric crosslinkers in a manner that is both forward capable and has much reduced susceptibility to viral
escape. We will explore the antiviral potential of dimeric crosslinkers using viruses of the genus Ebolavirus as
our model and a novel, rare nanobody manifesting uniform reactivity to nucleoprotein of all 6 species. Our two
specific aims are: (1) we will engineer mammalian cell expression vectors encoding nanobody homodimers
and assess antiviral activity using virus like particle surrogates at BSL-2 following plasmid transfection to drive
intrabody expression, (2) we will engineer E. coli expression vectors encoding nanobody homodimers fused to
cell penetrating peptides and glycosaminoglycan binding motifs and assess antiviral activity following protein
transduction of virus infected cells at BSL-4. Success will demonstrate a novel antiviral strategy that can then
be thoroughly explored for the propensity to select escape mutants relative to an existing neutralizing antibody
regime to test whether the strategy is more “escape-proof”. The overall approach should be applicable to other
human viral pathogens by carefully retuning the affinity reagent, with adequate time and resources, to
maximize broad long-term impact in helping to safe guard human health.
摘要
目前的冠状病毒(CoV)大流行,其他CoV和其他“感冒”病毒的季节性感染,
再加上每年流感疫苗接种的需要,这就克服了病毒抗原漂移和转变带来的挑战。
病毒颗粒表面和/或表面展示的病毒结构蛋白的靶向景观
受感染细胞的生长一直是开发基于抗体的疗法的主要基础。虽然大
在试图鉴定这些表面展示蛋白的保守区域方面已经取得了进展
而且不太容易“逃脱”抗体结合,这似乎是一场猫和老鼠的持续战斗,就像我们一样。
看到冠状病毒“令人担忧的变体”的不断出现。相反,病毒结构蛋白,
在病毒颗粒和细胞内部,避免了周期性抗体选择的影响,
保守的这些蛋白质的寡聚体组装也可以减弱抗病毒逃逸突变的影响
这是由于亲本细胞中存在突变体和野生型单体的混合。此外,化学计量
阻止寡聚体功能所需的抗病毒剂不一定是1种抗病毒剂对1种单体,
特别是如果抗病毒药物是一种交联剂,其影响将超越直接接触,
相邻的低聚物。我们的长期假设是,能够结合内部
病毒属的所有物种的寡聚结构蛋白在存在时一致地将阻碍病毒装配
作为二聚体交联剂,其方式是既能够正向,又具有大大降低的对病毒的易感性,
逃跑我们将使用埃博拉病毒属的病毒探索二聚体交联剂的抗病毒潜力,
我们的模型和一个新的,罕见的纳米抗体表现出一致的反应性,所有6个物种的核蛋白。我们两
具体目标是:(1)设计编码纳米抗体同源二聚体的哺乳动物细胞表达载体
并在质粒转染后使用BSL-2的病毒样颗粒替代物评估抗病毒活性,
胞内抗体表达,(2)我们将工程化E.编码融合至
细胞穿透肽和糖胺聚糖结合基序,并评估蛋白质
在BSL-4处转导病毒感染的细胞。成功将证明一种新的抗病毒策略,
彻底探索相对于现有中和抗体选择逃逸突变体的倾向
这是一个新的制度,以测试该战略是否更“防逃”。整体方法应适用于其他
通过用足够的时间和资源仔细地重新调整亲和试剂,
最大限度地发挥广泛的长期影响,帮助保护人类健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDREW HAYHURST其他文献
ANDREW HAYHURST的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDREW HAYHURST', 18)}}的其他基金
Nanobody toolkit for human coronavirus classification
用于人类冠状病毒分类的纳米抗体工具包
- 批准号:
10218812 - 财政年份:2021
- 资助金额:
$ 29.7万 - 项目类别:
Nanobody toolkit for human coronavirus classification
用于人类冠状病毒分类的纳米抗体工具包
- 批准号:
10375561 - 财政年份:2021
- 资助金额:
$ 29.7万 - 项目类别:
Mechanism and Evolution of Filoviral Monoclonal Affinity Reagent Sandwich Assays
丝状病毒单克隆亲和试剂三明治检测的机制和演变
- 批准号:
9204379 - 财政年份:2015
- 资助金额:
$ 29.7万 - 项目类别:
Rapid Ligand Pairing Strategy to Simplify Diagnostic Immunoassay Assembly
简化诊断免疫测定组装的快速配体配对策略
- 批准号:
8492614 - 财政年份:2013
- 资助金额:
$ 29.7万 - 项目类别:
Improved Tumor Targeting of Salmonella VNP20009 via Ice-llama Antibody Guidance
通过 Ice-llama 抗体指导改进沙门氏菌 VNP20009 的肿瘤靶向
- 批准号:
8637021 - 财政年份:2013
- 资助金额:
$ 29.7万 - 项目类别:
Improved Tumor Targeting of Salmonella VNP20009 via Ice-llama Antibody Guidance
通过 Ice-llama 抗体指导改进沙门氏菌 VNP20009 的肿瘤靶向
- 批准号:
8492399 - 财政年份:2013
- 资助金额:
$ 29.7万 - 项目类别:
相似海外基金
University of Aberdeen and Vertebrate Antibodies Limited KTP 23_24 R1
阿伯丁大学和脊椎动物抗体有限公司 KTP 23_24 R1
- 批准号:
10073243 - 财政年份:2024
- 资助金额:
$ 29.7万 - 项目类别:
Knowledge Transfer Partnership
Role of Natural Antibodies and B1 cells in Fibroproliferative Lung Disease
天然抗体和 B1 细胞在纤维增生性肺病中的作用
- 批准号:
10752129 - 财政年份:2024
- 资助金额:
$ 29.7万 - 项目类别:
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
- 批准号:
2339201 - 财政年份:2024
- 资助金额:
$ 29.7万 - 项目类别:
Continuing Grant
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
- 批准号:
MR/Y008693/1 - 财政年份:2024
- 资助金额:
$ 29.7万 - 项目类别:
Research Grant
Discovery of novel nodal antibodies in the central nervous system demyelinating diseases and elucidation of the mechanisms through an optic nerve demyelination model
发现中枢神经系统脱髓鞘疾病中的新型节点抗体并通过视神经脱髓鞘模型阐明其机制
- 批准号:
23K14783 - 财政年份:2023
- 资助金额:
$ 29.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of the mechanisms controlling the physicochemical properties and functions of supercharged antibodies and development of their applications
阐明控制超电荷抗体的理化性质和功能的机制及其应用开发
- 批准号:
23KJ0394 - 财政年份:2023
- 资助金额:
$ 29.7万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Developing first-in-class aggregation-specific antibodies for a severe genetic neurological disease
开发针对严重遗传神经系统疾病的一流聚集特异性抗体
- 批准号:
10076445 - 财政年份:2023
- 资助金额:
$ 29.7万 - 项目类别:
Grant for R&D
PLA2G2D Antibodies for Cancer Immunotherapy
用于癌症免疫治疗的 PLA2G2D 抗体
- 批准号:
10699504 - 财政年份:2023
- 资助金额:
$ 29.7万 - 项目类别:
Genetic adjuvants to elicit neutralizing antibodies against HIV
基因佐剂可引发抗艾滋病毒中和抗体
- 批准号:
10491642 - 财政年份:2023
- 资助金额:
$ 29.7万 - 项目类别:
Novel Immunogens to Elicit Broadly Cross-reactive Antibodies That Target the Hemagglutinin Head Trimer Interface
新型免疫原可引发针对血凝素头三聚体界面的广泛交叉反应抗体
- 批准号:
10782567 - 财政年份:2023
- 资助金额:
$ 29.7万 - 项目类别: