Novel antiviral strategy offering forward capability and reduced risk of escape
新颖的抗病毒策略提供前进能力并降低逃逸风险
基本信息
- 批准号:10593778
- 负责人:
- 金额:$ 29.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-04 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AffinityAntibodiesAntibody TherapyAntigen TargetingAreaAvidityBindingCapsidCellsCompensationCoronavirusCrosslinkerDNADetectionDevelopmentDiagnosticDiseaseEbola virusEngineeringEnsureEpitopesEscape MutantEscherichia coliEvolutionExhibitsFamilyFelis catusFoundationsFutureGenerationsGenesGlycosaminoglycansGoalsHealthHumanImmune systemIn VitroIndividualInfectionInfluenza vaccinationInterventionIntrabodyMammalian CellMediatingModelingMonitorMusMutationNatureNucleoproteinsParentsPenetrationPeptidesPharmaceutical PreparationsPlasmidsPolymersPredispositionProcessProteinsRNA VirusesRNA vaccineReagentResearchResourcesRiskSeasonsSiteSmall Interfering RNASpecificityStructural ProteinSurfaceSystemTechnologyTestingTherapeutic antibodiesTimeTransfectionViralViral GenomeViral Hemorrhagic FeversViral PhysiologyViral ProteinsViral Structural ProteinsVirionVirusVirus AssemblyVirus CultivationVirus ReplicationVirus-like particleWorkcoronavirus pandemiccrosslinkdesigndimerenv Gene Productsexpression vectorhuman diseaseinterestmembermonomermutantnanobodiesneutralizing antibodynonhuman primatenovelnovel coronavirusnovel strategiesparticlepathogenic viruspreferenceprotein oligomerstoichiometrysuccesstissue culturevariants of concern
项目摘要
ABSTRACT
The current coronavirus (CoV) pandemic, seasonal infections by other CoV and other “cold” viruses,
plus the need for annual influenza vaccinations exemplify the challenges posed by viral antigenic drift and shift.
Targeting landscapes of viral structural proteins displayed on the surfaces of virus particles and or the surfaces
of infected cells has been the primary basis for developing antibody-based therapeutics. Although great
advances have been made in trying to identify regions of these surface displayed proteins that are conserved
and less prone to “escape” antibody binding, it appears to be a continual battle of cat and mouse as we are
seeing with continual emergence of CoV “Variants of Concern”. In contrast, viral structural proteins that remain
inside virus particles and cells, avoid the impact of cyclical antibody selection, and tend to be far more
conserved. Oligomeric assemblies of these proteins can also blunt the impact of antiviral escape mutations
owing to the mix of mutant and wild-type monomers present in the parent cell. Furthermore, the stoichiometry
required of an antiviral to impede oligomer function need not be necessarily 1 antiviral to 1 monomer since,
especially if the antiviral were a crosslinker, its impact would be relayed beyond the immediate contact to
neighboring oligomers. Our long-term hypothesis is that affinity reagents capable of binding an internal
oligomeric structural protein of all species of a viral genus uniformly will impede viral assembly when present
as dimeric crosslinkers in a manner that is both forward capable and has much reduced susceptibility to viral
escape. We will explore the antiviral potential of dimeric crosslinkers using viruses of the genus Ebolavirus as
our model and a novel, rare nanobody manifesting uniform reactivity to nucleoprotein of all 6 species. Our two
specific aims are: (1) we will engineer mammalian cell expression vectors encoding nanobody homodimers
and assess antiviral activity using virus like particle surrogates at BSL-2 following plasmid transfection to drive
intrabody expression, (2) we will engineer E. coli expression vectors encoding nanobody homodimers fused to
cell penetrating peptides and glycosaminoglycan binding motifs and assess antiviral activity following protein
transduction of virus infected cells at BSL-4. Success will demonstrate a novel antiviral strategy that can then
be thoroughly explored for the propensity to select escape mutants relative to an existing neutralizing antibody
regime to test whether the strategy is more “escape-proof”. The overall approach should be applicable to other
human viral pathogens by carefully retuning the affinity reagent, with adequate time and resources, to
maximize broad long-term impact in helping to safe guard human health.
抽象的
当前的冠状病毒(COV)大流行,其他COV和其他“冷”病毒的季节性感染,
再加上年度影响疫苗的需求体现了病毒抗原漂移和转移带来的挑战。
在病毒颗粒表面上显示的病毒结构蛋白的靶向景观
感染细胞的主要基础是开发基于抗体的治疗。虽然很棒
试图确定这些表面显示的蛋白质的区域已取得进步
而且不太容易“逃脱”抗体约束,这似乎是一场连续的猫和老鼠战斗
随着COV的持续出现“关注的变体”。相反,保留的病毒结构蛋白
内部病毒颗粒和细胞,避免选择周期性抗体的影响,并且往往更大
保守。这些蛋白质的寡聚组件也可以钝化抗病毒逃生突变的影响
由于存在于母细胞中存在的突变体和野生型单体的混合物。此外,静态测定法
抗病毒需要阻碍低聚物功能的必要
特别是如果抗病毒是一个交联,其影响将被直接接触到
相邻的低聚物。我们的长期假设是能够结合内部的亲和力试剂
当存在时,病毒属的所有种类的寡聚结构蛋白会均匀地妨碍病毒组装
作为二聚体交联的方式,既具有前进且对病毒的敏感性都大大降低
逃脱。我们将使用埃博拉病毒属的病毒作为二聚体交联的抗病毒潜力
我们的模型和一种新颖的罕见纳米病,表现出对所有6种的核蛋白的均匀反应性。我们的两个
具体目的是:(1)我们将设计编码纳米型均二聚体的哺乳动物细胞表达向量
并在质粒转染后使用病毒(如粒子替代物)等病毒评估抗病毒活性
内部表达,(2)我们将设计编码纳米型同型二聚体的大肠杆菌表达载体
细胞穿透性宠物和糖胺聚糖结合基序以及蛋白质后的评估抗病毒活性
在BSL-4处转导病毒感染细胞。成功将展示一种新颖的抗病毒策略,然后
要彻底探索,以便选择相对于现有中和抗体选择逃生突变体
测试该策略是否更“防逃生”的政权。总体方法应适用于其他方法
人类病毒病原体通过仔细用足够的时间和资源来重新调整亲和力试剂
最大程度地提高长期影响,以帮助保护人类健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDREW HAYHURST其他文献
ANDREW HAYHURST的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDREW HAYHURST', 18)}}的其他基金
Nanobody toolkit for human coronavirus classification
用于人类冠状病毒分类的纳米抗体工具包
- 批准号:
10218812 - 财政年份:2021
- 资助金额:
$ 29.7万 - 项目类别:
Nanobody toolkit for human coronavirus classification
用于人类冠状病毒分类的纳米抗体工具包
- 批准号:
10375561 - 财政年份:2021
- 资助金额:
$ 29.7万 - 项目类别:
Mechanism and Evolution of Filoviral Monoclonal Affinity Reagent Sandwich Assays
丝状病毒单克隆亲和试剂三明治检测的机制和演变
- 批准号:
9204379 - 财政年份:2015
- 资助金额:
$ 29.7万 - 项目类别:
Rapid Ligand Pairing Strategy to Simplify Diagnostic Immunoassay Assembly
简化诊断免疫测定组装的快速配体配对策略
- 批准号:
8492614 - 财政年份:2013
- 资助金额:
$ 29.7万 - 项目类别:
Improved Tumor Targeting of Salmonella VNP20009 via Ice-llama Antibody Guidance
通过 Ice-llama 抗体指导改进沙门氏菌 VNP20009 的肿瘤靶向
- 批准号:
8637021 - 财政年份:2013
- 资助金额:
$ 29.7万 - 项目类别:
Improved Tumor Targeting of Salmonella VNP20009 via Ice-llama Antibody Guidance
通过 Ice-llama 抗体指导改进沙门氏菌 VNP20009 的肿瘤靶向
- 批准号:
8492399 - 财政年份:2013
- 资助金额:
$ 29.7万 - 项目类别:
相似国自然基金
人腺病毒4型双抗体鸡尾酒疗法的开发及其结构功能基础研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
人腺病毒4型双抗体鸡尾酒疗法的开发及其结构功能基础研究
- 批准号:32170948
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
肿瘤细胞靶向性光动力疗法联合SIRPα抗体导向的TRAIL对抗“冷”肿瘤的作用及机制
- 批准号:82073362
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
新型血管调控因子ANGPTL4对肺纤维化进程的调控作用及分子机制研究
- 批准号:81900071
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
开发基于cetuximab抗体靶向工程酶A4H363A的ADEPT肿瘤靶向疗法
- 批准号:21977055
- 批准年份:2019
- 资助金额:66 万元
- 项目类别:面上项目
相似海外基金
Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
- 批准号:
10751480 - 财政年份:2024
- 资助金额:
$ 29.7万 - 项目类别:
Understanding and optimizing antibody-based interventions against neonatal HSV infection
了解和优化针对新生儿 HSV 感染的抗体干预措施
- 批准号:
10752835 - 财政年份:2023
- 资助金额:
$ 29.7万 - 项目类别:
Human CMV monoclonal antibodies as therapeutics to inhibit virus infection and dissemination
人 CMV 单克隆抗体作为抑制病毒感染和传播的治疗药物
- 批准号:
10867639 - 财政年份:2023
- 资助金额:
$ 29.7万 - 项目类别:
Broadly neutralizing SARS-CoV-2 peptidic knobs
广泛中和 SARS-CoV-2 肽旋钮
- 批准号:
10735902 - 财政年份:2023
- 资助金额:
$ 29.7万 - 项目类别: