Elucidating mediators of genetic instability in Candida glabrata
阐明光滑念珠菌遗传不稳定性的介质
基本信息
- 批准号:10593240
- 负责人:
- 金额:$ 27.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-11-09 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:AntibodiesAntifungal AgentsAzole resistanceAzolesCRISPR/Cas technologyCandidaCandida glabrataCell divisionCellsChIP-seqChromosome Fragile SitesChromosomesCollaborationsDNADNA DamageDNA Double Strand BreakDNA RepairDNA SequenceData AnalysesData SetDouble Strand Break RepairDrug resistanceEpitopesEvolutionExposure toG-QuartetsGenesGeneticGenetic PolymorphismGenetic VariationGenomeGenome StabilityGenomicsHaploidyImpairmentIn VitroIncidenceKaryotypeKnowledgeLesionMacrophageMalignant NeoplasmsMapsMass Spectrum AnalysisMeasurementMediatingMediatorMitosisModelingMulti-Drug ResistanceMusMutationNew YorkNucleotidesOpen Reading FramesPhenotypePhosphotransferasesPilot ProjectsPoint MutationPoly(ADP-ribose) Polymerase InhibitorProbabilityProcessProteinsProteomicsPulsed-Field Gel ElectrophoresisReporterReportingResistanceResolutionRoleS phaseSaccharomyces cerevisiaeSignal TransductionSiteSourceStructureTechniquesTestingTransfer RNAUniversitiesVariantbiological systemschromatin immunoprecipitationexperienceexperimental studyfungusgastrointestinalgene repairgenetic evolutiongenetic varianthomologous recombinationmetabolomicsmortalitymutantnext generation sequencingpathogenic funguspreventresistance frequencyresistance mutationresistant strainresponsesuccesstherapeutically effectivevirtual
项目摘要
Candida glabrata is an opportunistic fungal pathogen associated with high mortality and whose incidence is
increasing due to its high frequency of resistance to the widely used azole antifungal class. C. glabrata also
rapidly evolves resistance to echinocandins and can become multi-drug resistant and thus virtually impossible
to treat. Drug resistance in C. glabrata is acquired via specific genetic variants. C. glabrata is also notable for its
remarkable genetic diversity, manifested by a variety of karyotypes and high levels of short nucleotide
polymorphisms (SNPs) among strains. However, how C. glabrata facilitates genetic instability is almost entirely
unknown. A major source of genetic instability in all examined biological systems are DNA double-strand breaks
(DSBs), which mediate chromosome rearrangements and are associated with high rates of point mutations in
nearby regions. Thus, both chromosome rearrangements and SNP variation across C. glabrata strains are
consistent with DNA DSBs being the major source of this genetic diversity. Indeed, our preliminary studies
showed that C. glabrata experiences DNA breaks and develops chromosome rearrangements and drug-resistant
mutations during its interaction with host cells, e.g., while residing in macrophages, and that deletion of DSB
repair gene RAD51 in C. glabrata significantly increases the emergence of drug-resistant mutants in the mouse
gastrointestinal colonization model. This proposal is based on the hypothesis that C. glabrata has evolved
mechanisms that facilitate genetic instability upon DNA damage and that to understand these mechanisms it is
necessary to understand how C. glabrata generates and processes DNA DSBs. In Specific Aim 1, we propose
to use DSB chromatin immunoprecipitation followed by next generation sequencing (DSB-ChIP-seq) and END-
seq (a highly sensitive, unbiased next-generation sequencing technique for quantitatively mapping DSBs at
nucleotide resolution across the genome) to identify “fragile” loci prone to DSB formation in C. glabrata, based
on the hypothesis that these loci are the most likely mediators of genetic instability. In Specific Aim 2, we will use
DSB-ChIP followed by mass spectrometry (DSB-ChIP-MS) to identify C. glabrata proteins that mediate DSB
transactions. In both Aims, the roles of selected identified loci/genes in DSB formation/processing and genome
stability will be validated experimentally. The proposed study will fill a large gap in knowledge and provide
information essential for understanding how C. glabrata promotes genetic diversity and evolves drug-resistant
variants. Karyotype instability and aberrant DSB repair are also hallmarks of many cancers, and in that context
understanding the mechanisms underlying DSB formation and processing has been instrumental in developing
effective therapeutic approaches targeting DSB repair mechanisms, e.g., by using PARP inhibitors. Thus, this
proposal will provide the first understanding of DSB formation and processing in C. glabrata and may identify its
“Achilles’ heel”, i.e., a mechanism that allows it to generate genetic diversity but also makes it more sensitive to
agents that disrupt or compromise DSB repair.
念珠菌glabrata是一种与高死亡率相关的机会性真菌病原体,其事件是
由于其对广泛使用的甲唑抗真菌类别的耐药性高频率而增加。 C. glabrata也是如此
迅速发展对echinocandins的抵抗力,并且可以变得多药,因此几乎是不可能的
治疗。 C. glabrata中的耐药性是通过特定的遗传变异获得的。 C. glabrata也因其
显着的遗传多样性,由多种核型和高水平的短核苷酸表现出来
菌株中的多态性(SNP)。但是,C。glabrata如何促进遗传不稳定性几乎完全是
未知。在所有检查的生物系统中,遗传不稳定性的主要来源是DNA双链断裂
(DSB),介导染色体重排,与高点突变相关
附近地区。这是染色体重排和跨C. glabrata菌株的SNP变化
与DNA DSB是这种遗传多样性的主要来源。确实,我们的初步研究
表明C. glabrata会经历DNA断裂并发展染色体重排和耐药性
突变与宿主细胞相互作用时,例如,居住在巨噬细胞中,并缺失DSB
修复基因rad51在glabrata中显着增加了小鼠药物抗药性突变体的出现
胃肠道定植模型。该提议基于以下假设:C。glabrata已进化
促进DNA损害遗传不稳定的机制,并且要理解这些机制
了解C. glabrata如何生成和处理DNA DSB所需。在特定目标1中,我们提出了
使用DSB染色质免疫沉淀,然后进行下一代测序(DSB-CHIP-SEQ)和末端 -
SEQ(一种高度敏感的,公正的下一代测序技术,用于定量映射DSB
跨基因组的核苷酸分辨率)以识别基于C. glabrata中DSB形成的“脆弱”基因座,基于C.
关于这些地方是遗传不稳定的介体的假设。在特定目标2中,我们将使用
DSB-CHIP随后进行质谱(DSB-ChIP-MS),以识别介导DSB的glabrata蛋白
交易。在这两个目标中,选定的局部/基因在DSB形成/加工和基因组中的作用
稳定性将通过实验验证。拟议的研究将填补知识的巨大空白,并提供
了解C. glabrata如何促进遗传多样性并发展耐药性的信息至关重要
变体。核型不稳定和异常DSB维修也是许多癌症的标志,在这种情况下
了解DSB形成和处理的基础机制在开发方面起了重要作用
有效的治疗方法针对DSB修复机制,例如使用PARP抑制剂。那,这个
提案将对C. glabrata中的DSB形成和加工提供首次理解,并可能确定其
“阿喀琉斯的脚跟”,即一种使其产生遗传多样性但也使其对其更敏感的机制
破坏或损害DSB修复的代理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erika Shor其他文献
Erika Shor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
典型唑类抗真菌剂在斑马鱼中的富集代谢规律及其性腺激素干扰效应研究
- 批准号:21507163
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
群体感应系统阻遏抗真菌剂藤黄绿菌素生物合成的分子机制
- 批准号:31270083
- 批准年份:2012
- 资助金额:82.0 万元
- 项目类别:面上项目
抗真菌剂藤黄绿菌素生物合成自诱导的分子机理研究
- 批准号:30800009
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Analysis of transcription factors determining azole resistance of Aspergillus fumigatus
烟曲霉唑类抗性转录因子分析
- 批准号:
10451817 - 财政年份:2019
- 资助金额:
$ 27.74万 - 项目类别:
Analysis of transcription factors determining azole resistance of Aspergillus fumigatus
烟曲霉唑类抗性转录因子分析
- 批准号:
10664888 - 财政年份:2019
- 资助金额:
$ 27.74万 - 项目类别:
Analysis of transcription factors determining azole resistance of Aspergillus fumigatus
烟曲霉唑类抗性转录因子分析
- 批准号:
10207376 - 财政年份:2019
- 资助金额:
$ 27.74万 - 项目类别:
Glucan Binding to Azole Drugs: A Novel Resistance Mechanism in Candida albicans
葡聚糖与唑类药物的结合:白色念珠菌的新型耐药机制
- 批准号:
7837029 - 财政年份:2009
- 资助金额:
$ 27.74万 - 项目类别:
Glucan Binding to Azole Drugs: A Novel Resistance Mechanism in Candida albicans
葡聚糖与唑类药物的结合:白色念珠菌的新型耐药机制
- 批准号:
7576131 - 财政年份:2008
- 资助金额:
$ 27.74万 - 项目类别: