Multivariate Modeling of the Neural Mechanisms of Treatment Response in Opioid Addiction
阿片类药物成瘾治疗反应神经机制的多变量建模
基本信息
- 批准号:10594030
- 负责人:
- 金额:$ 17.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-15 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AbstinenceAdherenceAffectAreaBehavior assessmentBehavioralBehavioral ResearchBrainBrain regionCause of DeathCharacteristicsClinic VisitsClinicalClinical ResearchClinical assessmentsCognitiveCollaborationsComplementCuesDataData AnalysesData SetDependenceDiseaseDropoutEffectivenessEndocrineFailureFunctional Magnetic Resonance ImagingGoalsHeterogeneityIndividualIndividual DifferencesInjectableInjectionsInterventionKnowledgeLeadershipLinkLiteratureMachine LearningMagnetic Resonance ImagingMeasuresMedialMethodologyMethodsModalityModelingNaltrexoneNatureNeurocognitiveNeuropsychologyNeurosciences ResearchOpiate AddictionOpioidOpioid AntagonistOpioid agonistOutcomePatient SchedulesPatient Self-ReportPatientsPatternPharmaceutical PreparationsPhysiologicalPopulationPrediction of Response to TherapyPredispositionProcessProductivityROC CurveRelapseResearchRestScheduleSelf-ExaminationStructureSubstance Use DisorderTechniquesToxicologyTrainingTranslational ResearchTreatment FailureTreatment outcomeUrineVentral StriatumWritingaddictionbrain magnetic resonance imagingcareercareer developmentclinical predictorscognitive neurosciencecravingcue reactivitydemographicsdesignexperiencefollow-upgray matterhigh dimensionalityhigh riskimaging modalityimprovedindexingindividual variationmachine learning algorithmmachine learning methodmachine learning modelmedication-assisted treatmentmultimodalityneuralneural modelneuroimagingneuromechanismnovelopioid epidemicopioid overdoseopioid use disorderpredictive modelingprimary outcomeprospectiverecruitrelapse predictionrelapse preventionresponsesecondary outcomeside effectskillssuccesstreatment responsetreatment riskyoung adult
项目摘要
PROJECT SUMMARY/ABSTRACT
The proposed K01 project will use multimodal magnetic resonance imaging (MRI) and machine learning (ML)
to elucidate the neurocognitive processes underlying treatment failure in young adults with opioid use disorder
(OUD). Young adults are at particularly high risk of OUD and fatal opioid overdose. The monthly injectable
extended-release opioid antagonist naltrexone (XR-NTX) is a highly effective OUD treatment and is particularly
well suited for young adults. However, XR-NTX adherence and relapse show considerable individual variability,
and the behavioral and clinical factors associated with such variability remain inconclusive. Previous research
has demonstrated the potential for multimodal MRI and ML techniques to elucidate the neurocognitive factors
that contribute to treatment response beyond behavioral and clinical measures. This project will take advantage
of the cutting-edge MRI and ML methods to model brain structures and functions that predict XR-NTX treatment
outcomes in young adults with OUD. The study will evaluate 18–34 year-old OUD patients before and during
the first three months of XR-NTX treatment, a period associated with the highest rate of dropout from treatment.
The primary outcome will be opioid relapse confirmed by weekly urine toxicology and self-report. The secondary
outcome will be non-adherence defined as failure to complete the first three injections. The study will focus on
five baseline measures of brain structures and functions that are potentially predictive of treatment response: 1)
grey matter volume; 2) functional connectivity with the ventral striatum; 3) reactivity to opioid cues; 4) inhibitory
control; and 5) self-evaluation. ML techniques will be used to reveal the patterns of brain structures/functions
that are associated with each outcome variable. Based on literature and preliminary findings, we anticipate that
combining MRI with behavioral and clinical assessments will better account for individual variability in XR-NTX
treatment outcomes in young adults with OUD, than using the behavioral and clinical variables alone. The data
will unveil novel brain mechanisms that contribute to the risk of treatment failure in this critical population. The
project will also serve as a training vehicle for Dr. Zhenhao Shi to improve his clinical and computational skills
and facilitate his independent career development. Specifically, it will enable Dr. Shi to achieve five training
goals: 1) to advance his knowledge in the methodology of clinical research; 2) to gain hands-on experience in
leading clinical projects; 3) to master ML and multivariate methodologies; 4) to apply multimodal MRI
techniques to translational and clinical research; and 5) to advance his general independent research skills
including leadership, networking, collaboration, scientific writing and grantsmanship. Through a combination of
didactic and hands-on activities, the project will fulfill Dr. Shi's training needs and enable his transition to a
successful and independent research career in applying advanced computational approaches to the
neuroscience research of substance use disorders and their treatments.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhenhao Shi其他文献
Zhenhao Shi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhenhao Shi', 18)}}的其他基金
Multivariate Modeling of the Neural Mechanisms of Treatment Response in Opioid Addiction
阿片类药物成瘾治疗反应神经机制的多变量建模
- 批准号:
10393693 - 财政年份:2021
- 资助金额:
$ 17.99万 - 项目类别:
Multivariate Modeling of the Neural Mechanisms of Treatment Response in Opioid Addiction
阿片类药物成瘾治疗反应神经机制的多变量建模
- 批准号:
10214440 - 财政年份:2021
- 资助金额:
$ 17.99万 - 项目类别:
相似海外基金
An innovative, AI-driven prehabilitation platform that increases adherence, enhances post-treatment outcomes by at least 50%, and provides cost savings of 95%.
%20创新、%20AI驱动%20康复%20平台%20%20增加%20依从性、%20增强%20治疗后%20结果%20by%20at%20至少%2050%、%20和%20提供%20成本%20节省%20of%2095%
- 批准号:
10057526 - 财政年份:2023
- 资助金额:
$ 17.99万 - 项目类别:
Grant for R&D
Improving Repositioning Adherence in Home Care: Supporting Pressure Injury Care and Prevention
提高家庭护理中的重新定位依从性:支持压力损伤护理和预防
- 批准号:
490105 - 财政年份:2023
- 资助金额:
$ 17.99万 - 项目类别:
Operating Grants
I-Corps: Medication Adherence System
I-Corps:药物依从性系统
- 批准号:
2325465 - 财政年份:2023
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
Unintrusive Pediatric Logging Orthotic Adherence Device: UPLOAD
非侵入式儿科记录矫形器粘附装置:上传
- 批准号:
10821172 - 财政年份:2023
- 资助金额:
$ 17.99万 - 项目类别:
Nuestro Sueno: Cultural Adaptation of a Couples Intervention to Improve PAP Adherence and Sleep Health Among Latino Couples with Implications for Alzheimer’s Disease Risk
Nuestro Sueno:夫妻干预措施的文化适应,以改善拉丁裔夫妇的 PAP 依从性和睡眠健康,对阿尔茨海默病风险产生影响
- 批准号:
10766947 - 财政年份:2023
- 资助金额:
$ 17.99万 - 项目类别:
CO-LEADER: Intervention to Improve Patient-Provider Communication and Medication Adherence among Patients with Systemic Lupus Erythematosus
共同领导者:改善系统性红斑狼疮患者的医患沟通和药物依从性的干预措施
- 批准号:
10772887 - 财政年份:2023
- 资助金额:
$ 17.99万 - 项目类别:
Pharmacy-led Transitions of Care Intervention to Address System-Level Barriers and Improve Medication Adherence in Socioeconomically Disadvantaged Populations
药房主导的护理干预转型,以解决系统层面的障碍并提高社会经济弱势群体的药物依从性
- 批准号:
10594350 - 财政年份:2023
- 资助金额:
$ 17.99万 - 项目类别:
Antiretroviral therapy adherence and exploratory proteomics in virally suppressed people with HIV and stroke
病毒抑制的艾滋病毒和中风患者的抗逆转录病毒治疗依从性和探索性蛋白质组学
- 批准号:
10748465 - 财政年份:2023
- 资助金额:
$ 17.99万 - 项目类别:
Improving medication adherence and disease control for patients with multimorbidity: the role of price transparency tools
提高多病患者的药物依从性和疾病控制:价格透明度工具的作用
- 批准号:
10591441 - 财政年份:2023
- 资助金额:
$ 17.99万 - 项目类别:
Development and implementation of peer-facilitated decision-making and referral support to increase uptake and adherence to HIV pre-exposure prophylaxis in African Caribbean and Black communities in Ontario
制定和实施同行协助决策和转介支持,以提高非洲加勒比地区和安大略省黑人社区对艾滋病毒暴露前预防的接受和依从性
- 批准号:
491109 - 财政年份:2023
- 资助金额:
$ 17.99万 - 项目类别:
Fellowship Programs