Neurocomputational Modeling Core

神经计算建模核心

基本信息

  • 批准号:
    10594028
  • 负责人:
  • 金额:
    $ 34.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2027-01-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY The overarching goal of the Neurocomputational Modeling Core is to provide a common formal framework that can incorporate measures of neural activity, connectivity, and behavior across Projects 1-5 to (a) quantify the functional roles of the OCDnet and its components in approach-avoidance decision-making and OCD symptomatology, and (b) predict changes in decision-making dynamics and symptom severity as a result of neural and clinical interventions. To achieve these goals, we will leverage (a) models of decision dynamics and their modulation by neural activity within individual circuit nodes, and (b) graph-theoretic models of interactions across circuit nodes. To quantify decision dynamics during the PAAT task, we will use hierarchical Bayesian parameter estimation of the drift diffusion model (HDDM), which enables reliable estimation of decision parameters and their modulation by trial-by-trial variance in neural signals, and supports Bayesian hypothesis testing for how these parameters may differ as a function of clinical status and neuromodulation. We have previously shown how such “computational biomarkers” can discriminate between patient conditions and symptoms better than traditional measures of behavior and brain activity, including in an approach-avoid context. We will test how PAAT choices are modulated by a combination of task variables (e.g., rewarding and aversive outcomes), neural activity across OCDnet nodes, and OCD symptom severity. Preliminary results show that the HDDM captures expected differences in choice dynamics (e.g., choice bias) between patients and healthy controls. To quantify task-related functional interactions across this circuit, we will use ancestral graph models, which measure the strength and direction of information flow across graph nodes. We will use this combination of modeling approaches to test for changes in decision and circuit dynamics resulting from targeted interventions (e.g., lesions, stimulation, treatment). Machine learning methods will quantify the degree to which such quantitative model fitting improves (1) classification of patient condition and (2) our ability to map changes in behavior, circuit dynamics, and disease course following interventions. Building on our extensive experience in neural networks and levels of computation involved in motivated learning and decision making across species, our computational framework will facilitate not only enhanced sensitivity to discriminate between clinical conditions, but will also identify hypotheses about the likely mechanisms involved, which will be tested via causal manipulations using the same quantitative framework. Contribution to Overall Center Goals & Interactions with Other Center Components. Our modeling framework will be applied to data across all Projects, including measures of connectivity (P1), behavioral and neural activity (P2-5), clinical measures (P3- 5), and influences of neural (P2&5) and behavioral (P4) interventions. Cores B & C will help with localization and estimation of neural activity. We will benefit from interactions amongst experts with complementary expertise in systems and cognitive neuroscience, psychiatry, engineering, and computational modeling.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MICHAEL J. FRANK其他文献

MICHAEL J. FRANK的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MICHAEL J. FRANK', 18)}}的其他基金

Brown Postdoctoral Training Program in Computational Psychiatry
布朗计算精神病学博士后培训项目
  • 批准号:
    10388230
  • 财政年份:
    2021
  • 资助金额:
    $ 34.09万
  • 项目类别:
Brown Postdoctoral Training Program in Computational Psychiatry
布朗计算精神病学博士后培训项目
  • 批准号:
    10647861
  • 财政年份:
    2021
  • 资助金额:
    $ 34.09万
  • 项目类别:
Brown Postdoctoral Training Program in Computational Psychiatry
布朗计算精神病学博士后培训项目
  • 批准号:
    10206628
  • 财政年份:
    2021
  • 资助金额:
    $ 34.09万
  • 项目类别:
Computational Modeling Core_Frank
计算建模核心_Frank
  • 批准号:
    10601139
  • 财政年份:
    2020
  • 资助金额:
    $ 34.09万
  • 项目类别:
Computational Modeling Core_Frank
计算建模核心_Frank
  • 批准号:
    10383689
  • 财政年份:
    2020
  • 资助金额:
    $ 34.09万
  • 项目类别:
Neurocomputational Modeling Core
神经计算建模核心
  • 批准号:
    10411714
  • 财政年份:
    2015
  • 资助金额:
    $ 34.09万
  • 项目类别:

相似海外基金

Establishment of a method for evaluating automobile driving ability focusing on frontal lobe functions and its application to accident prediction
以额叶功能为中心的汽车驾驶能力评价方法的建立及其在事故预测中的应用
  • 批准号:
    20K07947
  • 财政年份:
    2020
  • 资助金额:
    $ 34.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Evaluation of the Effectiveness of Multi-Professional Collaborative Assessment of Cognitive Function and Automobile Driving Skills and Comprehensive Support
认知功能与汽车驾驶技能多专业协同评估效果评价及综合支持
  • 批准号:
    17K19824
  • 财政年份:
    2017
  • 资助金额:
    $ 34.09万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of Flexible Automobile Driving Interface for Disabled People
残疾人灵活汽车驾驶界面开发
  • 批准号:
    25330237
  • 财政年份:
    2013
  • 资助金额:
    $ 34.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Automobile driving among older people with dementia: the effect of an intervention using a support manual for family caregivers
患有痴呆症的老年人的汽车驾驶:使用家庭护理人员支持手册进行干预的效果
  • 批准号:
    23591741
  • 财政年份:
    2011
  • 资助金额:
    $ 34.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了