Neurocomputational Modeling Core
神经计算建模核心
基本信息
- 批准号:10594028
- 负责人:
- 金额:$ 34.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AnatomyAutomobile DrivingBehaviorBehavioralBiological MarkersBrainClassificationClinicalComputer ModelsDataDecision MakingDiagnosisDiagnosticDiffusionDiffusion Magnetic Resonance ImagingDiseaseEngineeringFunctional Magnetic Resonance ImagingGoalsGraphIndividualInterventionLearningLesionLinkMapsMeasuresMethodsModelingMotivationOutcomeParameter EstimationPathway interactionsPatientsPatternProbabilityProcessPropertyPsychiatryReaction TimeRewardsRoleSamplingSensitivity and SpecificitySeveritiesShapesSiteSymptomsSystemTestingTheoretical modelValidationVariantclinical predictorscognitive neurosciencecomputer frameworkexperienceimprovedimproved outcomeinterestmachine learning classificationmachine learning methodneuralneural circuitneural correlateneural networkneuromechanismneuroregulationneurotransmissionpredictive modelingprospectivereduce symptomsresponsesymptomatology
项目摘要
PROJECT SUMMARY
The overarching goal of the Neurocomputational Modeling Core is to provide a common formal framework
that can incorporate measures of neural activity, connectivity, and behavior across Projects 1-5 to (a) quantify
the functional roles of the OCDnet and its components in approach-avoidance decision-making and OCD
symptomatology, and (b) predict changes in decision-making dynamics and symptom severity as a result of
neural and clinical interventions. To achieve these goals, we will leverage (a) models of decision dynamics and
their modulation by neural activity within individual circuit nodes, and (b) graph-theoretic models of interactions
across circuit nodes. To quantify decision dynamics during the PAAT task, we will use hierarchical Bayesian
parameter estimation of the drift diffusion model (HDDM), which enables reliable estimation of decision
parameters and their modulation by trial-by-trial variance in neural signals, and supports Bayesian hypothesis
testing for how these parameters may differ as a function of clinical status and neuromodulation. We have
previously shown how such “computational biomarkers” can discriminate between patient conditions and
symptoms better than traditional measures of behavior and brain activity, including in an approach-avoid
context. We will test how PAAT choices are modulated by a combination of task variables (e.g., rewarding and
aversive outcomes), neural activity across OCDnet nodes, and OCD symptom severity. Preliminary results
show that the HDDM captures expected differences in choice dynamics (e.g., choice bias) between patients
and healthy controls. To quantify task-related functional interactions across this circuit, we will use ancestral
graph models, which measure the strength and direction of information flow across graph nodes. We will use
this combination of modeling approaches to test for changes in decision and circuit dynamics resulting from
targeted interventions (e.g., lesions, stimulation, treatment). Machine learning methods will quantify the degree
to which such quantitative model fitting improves (1) classification of patient condition and (2) our ability to map
changes in behavior, circuit dynamics, and disease course following interventions. Building on our extensive
experience in neural networks and levels of computation involved in motivated learning and decision making
across species, our computational framework will facilitate not only enhanced sensitivity to discriminate
between clinical conditions, but will also identify hypotheses about the likely mechanisms involved, which will
be tested via causal manipulations using the same quantitative framework. Contribution to Overall Center
Goals & Interactions with Other Center Components. Our modeling framework will be applied to data across all
Projects, including measures of connectivity (P1), behavioral and neural activity (P2-5), clinical measures (P3-
5), and influences of neural (P2&5) and behavioral (P4) interventions. Cores B & C will help with localization
and estimation of neural activity. We will benefit from interactions amongst experts with complementary
expertise in systems and cognitive neuroscience, psychiatry, engineering, and computational modeling.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL J. FRANK其他文献
MICHAEL J. FRANK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL J. FRANK', 18)}}的其他基金
Brown Postdoctoral Training Program in Computational Psychiatry
布朗计算精神病学博士后培训项目
- 批准号:
10388230 - 财政年份:2021
- 资助金额:
$ 34.09万 - 项目类别:
Brown Postdoctoral Training Program in Computational Psychiatry
布朗计算精神病学博士后培训项目
- 批准号:
10647861 - 财政年份:2021
- 资助金额:
$ 34.09万 - 项目类别:
Brown Postdoctoral Training Program in Computational Psychiatry
布朗计算精神病学博士后培训项目
- 批准号:
10206628 - 财政年份:2021
- 资助金额:
$ 34.09万 - 项目类别:
相似海外基金
Establishment of a method for evaluating automobile driving ability focusing on frontal lobe functions and its application to accident prediction
以额叶功能为中心的汽车驾驶能力评价方法的建立及其在事故预测中的应用
- 批准号:
20K07947 - 财政年份:2020
- 资助金额:
$ 34.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of the Effectiveness of Multi-Professional Collaborative Assessment of Cognitive Function and Automobile Driving Skills and Comprehensive Support
认知功能与汽车驾驶技能多专业协同评估效果评价及综合支持
- 批准号:
17K19824 - 财政年份:2017
- 资助金额:
$ 34.09万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of Flexible Automobile Driving Interface for Disabled People
残疾人灵活汽车驾驶界面开发
- 批准号:
25330237 - 财政年份:2013
- 资助金额:
$ 34.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automobile driving among older people with dementia: the effect of an intervention using a support manual for family caregivers
患有痴呆症的老年人的汽车驾驶:使用家庭护理人员支持手册进行干预的效果
- 批准号:
23591741 - 财政年份:2011
- 资助金额:
$ 34.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)