Improving growth and neurodevelopment of very low birth weight infants through precision nutrition: The Optimizing Nutrition and Milk (Opti-NuM) Project.
通过精准营养改善极低出生体重婴儿的生长和神经发育:优化营养和牛奶 (Opti-NuM) 项目。
基本信息
- 批准号:10597958
- 负责人:
- 金额:$ 46.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-22 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAmericanBacteriaBifidobacteriumBirthBloodBody mass indexButyratesCellsChildClinicalClinical DataClinical NutritionCognitionComplexConsumptionCountryDNADataData ScientistData SetDatabasesDevelopmentDietDoctor of PhilosophyEnterocolitisFecesGeneticGoalsGrantGrowthGrowth FactorGrowth and Development functionHealthHospitalizationHourHuman MilkHydrocortisoneImmunologic FactorsInfantInfant HealthIntakeInternationalLifeMachine LearningMacronutrients NutritionMeasuresMicronutrientsMilkMilk SubstitutesModelingMorbidity - disease rateNeonatalNeurologicNutrientNutritionalOligosaccharidesOutcomeParentsPlasmaPopulationProtocols documentationQuestionnairesResearchResearch PersonnelResourcesRiskRoleSamplingSepsisShapesSingle Nucleotide PolymorphismSourceStressSubgroupSystems BiologyTechnologyTimeTitrationsVery Low Birth Weight InfantVulnerable PopulationsWeightadverse outcomebiobankbiological systemsdonor milkenteric pathogenevidence basefeedingfollow-upgut microbiomegut microbiotahigh risk infantimprovedinnovationinterestmachine learning methodmachine learning pipelinemicrobialmicrobial compositionmicrobiotamultidisciplinarymultiple omicsneurodevelopmentnovelnutritionpolygenic risk scoreprecision nutritionpredictive modelingpreventprogramssex
项目摘要
PROJECT SUMMARY
Significance: Infants born of very low birth weight (VLBW) account for 50% of all long-term neurological
morbidity among North American children; they commonly have sub-optimal growth and life threatening
morbidities such as necrotising enterocolitis and sepsis. It is now widely recognized that human milk (HM)
feeding is the best strategy to prevent serious morbidity in VLBW infants, yet growth and neurodevelopment
often remain sub-optimal with current one-size-fits-all feeding regimes. There is increasing interest in
“precision nutrition” approaches, but it is unclear which HM components require personalized titration.
Previous efforts have focused on macronutrients, but HM also contains essential micronutrients as well as non-
nutrient bioactive components that shape the gut microbiome. Further, it is unclear if or how parental factors
(e.g. stress, body mass index, diet) and infant factors (e.g. genetics, gut microbiota, sex, acuity) influence
relationships between early nutrition and growth, neurodevelopment and morbidity. Understanding these
complex relationships is paramount to developing effective personalized HM feeding strategies for VLBW
infants. This is the overarching goal of the proposed Optimizing Nutrition and Milk (Opti-NuM) Project.
Approach: We will leverage two established research platforms led by PIs of this grant: 1) the Maximizing
Mother’s Milk (MaxiMoM) Program with its neonatal feeding trial network and 2) the International
Milk Composition (IMiC) Consortium. This partnership unites the comprehensive nutrition and clinical
data (daily feed volumes and composition) and pristinely collected biospecimens from MaxiMoM (n=1105)
with the systems biology and machine learning pipelines from IMiC Consortium. We aim to define optimal
nutrient intake ranges (Aim 1) and microbially-relevant non-nutrient intake profiles (Aim 2) associated with
optimal growth and neurodevelopment and low risk of serious morbidity in different clinical sub-populations
of HM-fed VLBW infants. Additionally, we will explore the role of infant gut microbiota, infant genetics and
parent stress in associations between early nutrition and growth, neurodevelopment and morbidity (Aim 3).
Innovation: The MaxiMoM platform is unique in the world in terms of size, scope of nutritional data,
biobanked samples and longitudinal follow up data. The IMiC Consortium approach to studying HM as a
biological system using sophisticated modelling and machine learning approaches is pushing the boundaries of
HM research. Combined, these platforms offer an unparalleled opportunity to decipher how HM supports the
growth and development of VLBW infants, and to accelerate the development of novel precision nutrition
approaches for this vulnerable population.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Meghan Brianne Azad其他文献
Meghan Brianne Azad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Meghan Brianne Azad', 18)}}的其他基金
The Multi-Omic Milk (MuMi) Study: Leveraging the IMiC Platform and the CHILD Cohort to study human milk as a biological system and understand its composition, determinants and impacts on child health
多组学牛奶 (MuMi) 研究:利用 IMiC 平台和儿童队列研究母乳作为一个生物系统,并了解其成分、决定因素以及对儿童健康的影响
- 批准号:
10532119 - 财政年份:2022
- 资助金额:
$ 46.53万 - 项目类别:
The Multi-Omic Milk (MuMi) Study: Leveraging the IMiC Platform and the CHILD Cohort to study human milk as a biological system and understand its composition, determinants and impacts on child health
多组学牛奶 (MuMi) 研究:利用 IMiC 平台和儿童队列研究母乳作为一个生物系统,并了解其成分、决定因素以及对儿童健康的影响
- 批准号:
10676907 - 财政年份:2022
- 资助金额:
$ 46.53万 - 项目类别:
Improving growth and neurodevelopment of very low birth weight infants through precision nutrition: The Optimizing Nutrition and Milk (Opti-NuM) Project.
通过精准营养改善极低出生体重婴儿的生长和神经发育:优化营养和牛奶 (Opti-NuM) 项目。
- 批准号:
10708940 - 财政年份:2022
- 资助金额:
$ 46.53万 - 项目类别:
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 46.53万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 46.53万 - 项目类别:
Standard Grant
Understanding Latin American Challenges in the 21st Century (LAC-EU)
了解拉丁美洲在 21 世纪面临的挑战 (LAC-EU)
- 批准号:
EP/Y034694/1 - 财政年份:2024
- 资助金额:
$ 46.53万 - 项目类别:
Research Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
- 批准号:
2333724 - 财政年份:2024
- 资助金额:
$ 46.53万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346565 - 财政年份:2024
- 资助金额:
$ 46.53万 - 项目类别:
Standard Grant
REU Site: Research Experiences for American Leadership of Industry with Zero Emissions by 2050 (REALIZE-2050)
REU 网站:2050 年美国零排放工业领先地位的研究经验 (REALIZE-2050)
- 批准号:
2349580 - 财政年份:2024
- 资助金额:
$ 46.53万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346564 - 财政年份:2024
- 资助金额:
$ 46.53万 - 项目类别:
Standard Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
- 批准号:
2401164 - 财政年份:2024
- 资助金额:
$ 46.53万 - 项目类别:
Standard Grant
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
- 批准号:
2412294 - 财政年份:2024
- 资助金额:
$ 46.53万 - 项目类别:
Standard Grant
Conference: Doctoral Consortium at Student Research Workshop at the Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)
会议:计算语言学协会 (NAACL) 北美分会年会学生研究研讨会上的博士联盟
- 批准号:
2415059 - 财政年份:2024
- 资助金额:
$ 46.53万 - 项目类别:
Standard Grant