Uncovering the metabolic underpinnings of T cell exhaustion
揭示 T 细胞耗竭的代谢基础
基本信息
- 批准号:10593593
- 负责人:
- 金额:$ 63.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-19 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:Acetyl Coenzyme AAconitate HydrataseAntigensAntioxidantsBiologyBlocking AntibodiesCell physiologyCellsCellular biologyCharacteristicsChronicCitratesCitric Acid CycleCysteineCytosolDataEnvironmentExposure toFatty AcidsFunctional disorderGenesGeneticGenetic TranscriptionGlucoseHypoxiaImmuneImmunityImmunosuppressionImmunotherapyIn VitroKnockout MiceLipidsLipolysisMalignant NeoplasmsMediatingMetabolicMetabolic stressMetabolismMitochondriaModalityModelingMonoclonal AntibodiesNutrientObesityOxidative StressOxygenPD-1 blockadePathway interactionsPatientsPeroxidesPharmacologyPhenotypePhosphoric Monoester HydrolasesPhosphorylationPhosphotyrosinePlayProductionProtein Tyrosine PhosphataseProteomeProteomicsReactive Oxygen SpeciesRegulatory T-LymphocyteReportingRoleSignal TransductionSourceStressT cell differentiationT-LymphocyteTechnologyTissuesTumor ImmunityTumor-infiltrating immune cellsTyrosineUp-RegulationWeightanti-canceranti-tumor immune responsebiological adaptation to stressconditional knockoutcytokinecytotoxiccytotoxicitydesignexhaustexhaustionfatty acid oxidationimprovedin vivoinhibitorlipid biosynthesismembermitochondrial dysfunctionneoplastic cellnovelnovel therapeuticsoverexpressionpatient subsetspreventprogenitorprogrammed cell death protein 1responseself-renewalstress reactivitysuccesstranscriptomicstumor growthuptake
项目摘要
PROJECT SUMMARY/ABSTRACT
The successes of immunotherapies like blockade of co-inhibitory `checkpoint' molecules have changed the
treatment paradigm of cancer. However, the fact that robust responses are restricted to a subset of patients
highlights the need to further understand the biology of exhausted T cells: what drives their differentiation,
maintains their dysfunction, and how they may be reinvigorated to eradicate tumor cells. Our lab and others
have revealed that metabolic stress and mitochondrial dysfunction are key drivers in T cell exhaustion, both
from a cell extrinsic and cell intrinsic perspective. We recently reported that mitochondrial stress and reactive
oxygen species (ROS) production, driven to intolerable levels under hypoxic environments in the face of
persistent antigen, was sufficient to deviate cells into a terminally exhausted fate. Antioxidants both
pharmacologic and genetic could bias T cell differentiation away from exhaustion to more functional fates. But precisely how ROS production alters T cell fate and function remains unclear. One of the more intriguing
observations was elevating ROS via mitochondrial dysfunction altered T cell signaling: as peroxide is one of
the more potent inhibitors of tyrosine phosphatases, elevating ROS alone mimicked TCR and other
phosphotyrosine signals. ROS also dramatically reprograms cellular metabolism: by inhibiting aconitase, citrate is driven from the mitochondria where it is converted to acetyl-CoA, acting as a substrate for de novo
lipogenesis. As a result, while exhausted cells possess dysfunctional mitochondria and compete poorly for
glucose, they are loaded with lipid droplets and repress fatty acid oxidiation and lipolysis. While we know that
mitochondrial stress can drive T cells to exhaustion and that terminally exhausted T cells are metabolically
insufficient, the mechanisms that ultimately drive and enforce the phenotype remain unclear. In this Proposal,
we will identify the metabolic underpinnings of T cell exhaustion: how metabolic stress can interfere with
signaling, transcription, and differentiation. AIM 1: Determine how oxidative stress alters T cell signaling
cascades at the level of phosphatase inhibition. ROS play central roles in signaling as inhibitors of tyrosine
phosphatases. We will determine the role of ROS in exhausted T cell function in vivo, and use proteomics and
transcriptomic technologies to identify the phosphorylation cascades susceptible to ROS induction. AIM 2:
Identify how ROS-mediated changes in metabolic flux undermine T cell function. In this Aim, we will explore
the role increased lipid storage plays in T cell function and ask whether these elevated levels of lipids
represent `dead weight' or an untapped fuel source. AIM 3: Define the importance of altered nutrient pathways induced through oxidative stress responses. Our data suggest Slc16a11 similarly supports lactate uptake into exhausted T cells and maintains their dysfunctional state. Using a conditional knockout mouse and blocking antibodies, we will determine the importance of monocarboxylate metabolism in exhausted T cell biology.
项目总结/摘要
免疫疗法的成功,如阻断共抑制“检查点”分子,改变了免疫系统的功能。
癌症的治疗模式。然而,事实上,强有力的反应仅限于一部分患者,
强调需要进一步了解耗尽的T细胞的生物学:是什么驱动它们的分化,
维持它们的功能障碍,以及它们如何被重新激活以根除肿瘤细胞。我们的实验室和其他
已经揭示了代谢应激和线粒体功能障碍是T细胞耗竭的关键驱动因素,
从细胞外在和细胞内在的角度。我们最近报道,线粒体应激和反应性
氧物种(ROS)的产生,在缺氧环境下,在面对
持久性抗原足以使细胞偏离最终耗尽的命运。抗氧化剂
药理学和遗传学可以使T细胞分化偏离衰竭,转向功能更强的命运。但ROS的产生如何改变T细胞的命运和功能仍不清楚。其中一个更有趣的
观察结果是通过线粒体功能障碍改变T细胞信号传导来升高ROS:因为过氧化物是
酪氨酸磷酸酶的更有效的抑制剂,提高ROS单独模仿TCR和其他
磷酸酪氨酸信号。ROS还显著地重新编程细胞代谢:通过抑制乌头酸酶,柠檬酸盐从线粒体中被驱动,在线粒体中它被转化为乙酰辅酶A,作为从头合成的底物。
脂肪生成因此,虽然疲惫的细胞具有功能失调的线粒体,
葡萄糖,它们装载有脂滴并抑制脂肪酸氧化和脂解。虽然我们知道
线粒体应激可以驱使T细胞耗尽,并且终末耗尽的T细胞在代谢上被破坏。
尽管这些研究尚不充分,但最终驱动和实施表型的机制仍不清楚。在本建议书中,
我们将确定T细胞耗竭的代谢基础:代谢应激如何干扰T细胞耗竭,
信号传导、转录和分化。目的1:确定氧化应激如何改变T细胞信号传导
在磷酸酶抑制水平上级联。活性氧作为酪氨酸抑制剂在信号转导中发挥重要作用
磷酸酶我们将确定活性氧在体内耗尽的T细胞功能中的作用,并使用蛋白质组学和
转录组学技术来鉴定对ROS诱导敏感的磷酸化级联。目标2:
确定ROS介导的代谢通量变化如何破坏T细胞功能。在本目标中,我们将探讨
增加的脂质储存在T细胞功能中的作用,并询问这些升高的脂质水平是否
代表“自重”或未开发的燃料来源。目的3:确定通过氧化应激反应诱导的营养途径改变的重要性。我们的数据表明Slc 16 a11类似地支持乳酸摄取到耗尽的T细胞中并维持其功能障碍状态。使用条件性敲除小鼠和阻断抗体,我们将确定一元羧酸代谢在耗尽的T细胞生物学中的重要性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Greg M. Delgoffe其他文献
Regulatory T cell stability is maintained by a neuropilin-1 : semaphorin-4 a axis
调节性 T 细胞的稳定性由 Neuropilin-1 : semaphorin-4 a 轴维持
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Greg M. Delgoffe;Seng;Meghan E. Turnis;D. Gravano;C. Guy;Abigail E. Overacre;M. Bettini;P. Vogel;D. Finkelstein;Jody;Bonnevier;C. Workman;D. Vignali - 通讯作者:
D. Vignali
The intrinsic pro-tumorigenic role of IRF1
IRF1 的内在促肿瘤作用
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:4.4
- 作者:
Lulu Shao;W. Hou;Nicole E. Scharping;Greg M. Delgoffe;Saumendra N. Sarkar - 通讯作者:
Saumendra N. Sarkar
Redox and detox: Malate shuttle metabolism keeps exhausted T cells fit.
氧化还原和排毒:苹果酸穿梭代谢使疲惫的 T 细胞保持健康。
- DOI:
10.1016/j.cmet.2023.11.005 - 发表时间:
2023 - 期刊:
- 影响因子:29
- 作者:
Alok Kumar;Greg M. Delgoffe - 通讯作者:
Greg M. Delgoffe
Tumour interstitial fluid-enriched phosphoethanolamine suppresses T cell function
富含肿瘤间质液的磷酸乙醇胺抑制 T 细胞功能
- DOI:
10.1038/s41556-025-01650-9 - 发表时间:
2025-04-21 - 期刊:
- 影响因子:19.100
- 作者:
Yupeng Wang;Drew Wilfahrt;Patrick Jonker;Konstantinos Lontos;Chufan Cai;Benjamin Cameron;Bingxian Xie;Ronal M. Peralta;Emerson R. Schoedel;William G. Gunn;Roya AminiTabrizi;Hardik Shah;Dayana B. Rivadeneira;Alexander Muir;Greg M. Delgoffe - 通讯作者:
Greg M. Delgoffe
435 A phase II trial of nivolumab plus axitinib in patients with anti-PD1 refractory advanced melanoma
435 纳武单抗联合阿西替尼治疗抗 PD1 难治性晚期黑色素瘤患者的 II 期试验
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:10.9
- 作者:
Saba S. Shaikh;Y. Zang;Hong Wang;Xi Yang;C. Sander;Amy Rose;D. Davar;J. Luke;H. Zarour;J. Kirkwood;Greg M. Delgoffe;Y. Najjar - 通讯作者:
Y. Najjar
Greg M. Delgoffe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Greg M. Delgoffe', 18)}}的其他基金
Dissecting the role of hypoxia in T cell differentiation in cancer
剖析缺氧在癌症 T 细胞分化中的作用
- 批准号:
10578000 - 财政年份:2023
- 资助金额:
$ 63.36万 - 项目类别:
Metabolic control of regulatory T cell functional identity
调节性 T 细胞功能特性的代谢控制
- 批准号:
10510537 - 财政年份:2022
- 资助金额:
$ 63.36万 - 项目类别:
Uncovering the metabolic underpinnings of T cell exhaustion
揭示 T 细胞耗竭的代谢基础
- 批准号:
10707255 - 财政年份:2022
- 资助金额:
$ 63.36万 - 项目类别:
Metabolic control of regulatory T cell functional identity
调节性 T 细胞功能特性的代谢控制
- 批准号:
10677731 - 财政年份:2022
- 资助金额:
$ 63.36万 - 项目类别:
Exploring and exploiting metabolic plasticity in regulatory T cells
探索和利用调节性 T 细胞的代谢可塑性
- 批准号:
9348845 - 财政年份:2017
- 资助金额:
$ 63.36万 - 项目类别:
Elucidating the regulation of interleukin-35, a regulatory cytokine, in T cells
阐明 T 细胞中调节性细胞因子 IL-35 的调节
- 批准号:
8255282 - 财政年份:2012
- 资助金额:
$ 63.36万 - 项目类别:
Elucidating the regulation of interleukin-35, a regulatory cytokine, in T cells
阐明 T 细胞中调节性细胞因子 IL-35 的调节
- 批准号:
8610875 - 财政年份:2012
- 资助金额:
$ 63.36万 - 项目类别:
Elucidating the regulation of interleukin-35, a regulatory cytokine, in T cells
阐明 T 细胞中调节性细胞因子 IL-35 的调节
- 批准号:
8432601 - 财政年份:2012
- 资助金额:
$ 63.36万 - 项目类别:
Project 1: Hypoxia and metabolic dysregulation as a targetable barrier to immunotherapy in head and neck squamous cell carcinoma (HNSCC)
项目 1:缺氧和代谢失调作为头颈鳞状细胞癌 (HNSCC) 免疫治疗的目标障碍
- 批准号:
10331957 - 财政年份:2004
- 资助金额:
$ 63.36万 - 项目类别:
Project 1: Hypoxia and metabolic dysregulation as a targetable barrier to immunotherapy in head and neck squamous cell carcinoma (HNSCC)
项目 1:缺氧和代谢失调作为头颈鳞状细胞癌 (HNSCC) 免疫治疗的目标障碍
- 批准号:
10704505 - 财政年份:2004
- 资助金额:
$ 63.36万 - 项目类别:














{{item.name}}会员




