RadxTools for assessing tumor treatment response on imaging

用于评估影像学肿瘤治疗反应的 RadxTools

基本信息

  • 批准号:
    10593646
  • 负责人:
  • 金额:
    $ 23.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT: Medulloblastoma (MB) is a malignant, fast-growing pediatric brain tumor with heterogenous outcomes and a 5-year survival rate of 70-80%. Current treatment strategies for MB patients include surgical resection, chemotherapy, and craniospinal irradiation (CSI), with dose-intensification in high-risk patients (defined as residual tumor >1.5 cm2, evidence of leptomeningeal metastases, or large-cell/anaplastic histology) to improve clinical outcomes, while de-escalation of therapy to reduce long-term sequelae in standard-risk MB patients. Unfortunately, this treatment protocol has only proven useful as a rough guide for predicting prognosis with the existing clinical stratification; particularly, the 5-year survival rate for the high-risk patients are currently at about 60%. Additionally, the existing clinical risk stratification fails to identify about 20–30% of standard-risk patients who might be overtreated and eventually suffer from long-term morbidities that significantly affect their quality of life. Consequently, there is a critical need for reliable tools to risk-stratify MB patients based on their survival, with the goal of identifying high-risk MB cases who are most likely to receive added benefit from adjuvant and concomitant therapy, while de-escalating therapy in low/standard-risk cases. Through an ongoing NCI U01 award (1U01CA248226-01) from the Informatics Technology for Cancer Research (ITCR), our group has been leading the development of peri-tumoral (Eur. Rad 20172, AJNR 20183) and intra-tumoral spatial heterogeneity radiomics, that go beyond texture, shape-based approaches, for characterization of adult tumors. As an extension to our U01 efforts, in this supplemental project, we propose to develop two informatics modules for (1) radiomic analysis for tumor characterization on clinical MRI scans (Gd-T1w, T2w, FLAIR), and (2) a risk-stratification module, for survival risk-stratification of pediatric MB patients. In our preliminary work, we demonstrated that our biophysical deformation descriptor that characterizes subtle changes in vasodilation from brain parenchyma on Gd-T1w MRI scans, had higher concordance-index (C- index) in predicting overall survival in MB patients compared to employing the molecular subgroup-based stratification [n=89, p<0.05 vs. p=0.6, C-index=0.831 vs. 0.80]. The 2 modules developed in our supplement project will be leveraged to improve on our initial model (using deformations alone), to (a) include features relating to (1) 3D topology, (2) localized entropy, and (3) peri-tumoral features from the vicinity of the tumor and (b) perform MRI-based risk-stratification of MB patients based on their survival characteristics, independent of molecular stratification. Our collaborative efforts with Children's Hospital Cinncinati, Nationawide Childrens Columbus, and Children's Brain Tumor Network, will led to creation of a rich, one-of-the-largest MB cohorts for the pediatric cancer community and will serve as the foundation of ongoing and future studies focused on resolving MB aetiology. Following successful completion, we will make the multi-institutional studies and the associated mRRisc features publicly available by leveraging ongoing efforts through ITCR.
摘要:髓母细胞瘤(MB)是一种恶性,快速增长的小儿脑肿瘤 结果和5年的生存率为70-80%。 MB患者的当前治疗策略包括手术 切除,化学疗法和颅脊髓辐射(CSI),高危患者的剂量强化 (定义为残余肿瘤> 1.5 cm2,瘦脑转移的证据或大细胞/那种塑性组织学) 为了改善临床结局,同时降低治疗以减少标准风险MB中的长期后遗症 患者。不幸的是,该治疗方案仅证明是预测的粗略指南 现有临床分层的预后;特别是高危患者的5年生存率 目前约为60%。此外,现有的临床风险分层无法识别约20-30% 标准风险的患者可能过度治疗,有时会遭受长期病毒的困扰 显着影响他们的生活质量。因此,迫切需要可靠的工具将MB风险分类化 患者基于其生存,目的是确定最有可能接受的高风险MB病例 在低/标准风险病例中,调整和伴随的治疗可带来调整和伴随的治疗,同时降低治疗。 通过持续的NCI U01奖(1U01CA248226-01) 研究(ITCR),我们的小组一直领导着肿瘤周日的发展(Eur。Rad20172,AJNR 20183) 以及肿瘤内空间异质性放射素学,超越纹理,基于形状的方法,用于 成人肿瘤的表征。作为我们U01工作的扩展,在这个补充项目中,我们建议 开发两个信息模块,用于(1)放射素分析,以进行临床MRI扫描的肿瘤表征 (GD-T1W,T2W,FLAIR)和(2)一个风险分层模块,用于小儿MB患者的生存风险分层。 在我们的初步工作中,我们证明了字符微妙的生物物理变形描述 GD-T1W MRI扫描上脑实质的血管舒张变化的变化具有较高的一致性指数(C- 与使用分子亚组相比,指数)预测MB患者的总生存率 分层[n = 89,p <0.05 vs. p = 0.6,c-index = 0.831 vs. 0.80]。我们的补充中开发的两个模块 项目将被利用以改进我们的初始模型(仅使用变形),至(a)包含功能 与(1)3D拓扑,(2)局部熵以及(3)肿瘤附近的肿瘤外特征和(3) (b)基于MB患者的生存特征对MB患者进行基于MRI的风险分层,而与 分子分层。我们与辛辛那提儿童医院的合作努力 哥伦布和儿童脑肿瘤网络将导致创建一个丰富的,是一个独一的MB队列 儿科癌症社区将作为正在进行和未来研究的基础 解决MB病因。成功完成后,我们将进行多机构研究,并 相关的MRRISC特征通过利用ITCR的持续努力,可公开获得。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Introduction to radiomics and radiogenomics in neuro-oncology: implications and challenges.
  • DOI:
    10.1093/noajnl/vdaa148
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Beig N;Bera K;Tiwari P
  • 通讯作者:
    Tiwari P
Can Tumor Location on Pre-treatment MRI Predict Likelihood of Pseudo-Progression vs. Tumor Recurrence in Glioblastoma?-A Feasibility Study.
  • DOI:
    10.3389/fncom.2020.563439
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Ismail M;Hill V;Statsevych V;Mason E;Correa R;Prasanna P;Singh G;Bera K;Thawani R;Ahluwalia M;Madabhushi A;Tiwari P
  • 通讯作者:
    Tiwari P
Identifying Cross-Scale Associations between Radiomic and Pathomic Signatures of Non-Small Cell Lung Cancer Subtypes: Preliminary Results.
  • DOI:
    10.3390/cancers12123663
  • 发表时间:
    2020-12-07
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Alvarez-Jimenez C;Sandino AA;Prasanna P;Gupta A;Viswanath SE;Romero E
  • 通讯作者:
    Romero E
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pallavi Tiwari其他文献

Pallavi Tiwari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pallavi Tiwari', 18)}}的其他基金

Artificial Intelligence-based decision support for chemotherapy-response assessment in Brain Tumors
基于人工智能的脑肿瘤化疗反应评估决策支持
  • 批准号:
    10589512
  • 财政年份:
    2023
  • 资助金额:
    $ 23.4万
  • 项目类别:
RadxTools for assessing tumor treatment response on imaging
用于评估影像学肿瘤治疗反应的 RadxTools
  • 批准号:
    10477947
  • 财政年份:
    2020
  • 资助金额:
    $ 23.4万
  • 项目类别:
RadxTools for assessing tumor treatment response on imaging
用于评估影像学肿瘤治疗反应的 RadxTools
  • 批准号:
    10206077
  • 财政年份:
    2020
  • 资助金额:
    $ 23.4万
  • 项目类别:

相似国自然基金

穿透性靶向胰腺癌内cDC1的纳米佐剂调控溶酶体逃逸促进放疗诱导ICD的机制研究
  • 批准号:
    82303680
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多级改造的工程化外泌体自佐剂疫苗平台实现鼻上皮细胞感染拟态和粘膜递送的研究
  • 批准号:
    32371440
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
展示PD-L1抗体的纳米锰佐剂联合放疗以诱导原位肿瘤疫苗的产生及其机制的探究
  • 批准号:
    32371518
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
靶向FPPS的双磷酸疫苗佐剂的开发
  • 批准号:
    82341040
  • 批准年份:
    2023
  • 资助金额:
    100 万元
  • 项目类别:
    专项基金项目
应用于冠状病毒广谱疫苗开发的新型全链式免疫增强型佐剂研究
  • 批准号:
    82341036
  • 批准年份:
    2023
  • 资助金额:
    110 万元
  • 项目类别:
    专项基金项目

相似海外基金

Mechanical regulation of maturation and pathology of engineered human heart tissues
工程人体心脏组织成熟和病理的机械调节
  • 批准号:
    10604901
  • 财政年份:
    2023
  • 资助金额:
    $ 23.4万
  • 项目类别:
Identifying the Most Effective Adjuvant(s) for Leading Group A Streptococcal Vaccine Antigens in Preclinical Mouse and Nonhuman Primate Models
在临床前小鼠和非人灵长类动物模型中确定 A 组链球菌疫苗抗原最有效的佐剂
  • 批准号:
    10577066
  • 财政年份:
    2023
  • 资助金额:
    $ 23.4万
  • 项目类别:
Chromatin Organization in Glioma Initiation
神经胶质瘤起始中的染色质组织
  • 批准号:
    10331837
  • 财政年份:
    2021
  • 资助金额:
    $ 23.4万
  • 项目类别:
Chromatin Organization in Glioma Initiation
神经胶质瘤起始中的染色质组织
  • 批准号:
    10156402
  • 财政年份:
    2021
  • 资助金额:
    $ 23.4万
  • 项目类别:
Engineered Enteric Nervous System-Peri Neural Invasion platform to improve predictive preclinical screens in early-stage colorectal adenocarcinomas
工程肠神经系统-周围神经侵袭平台可改善早期结直肠腺癌的预测性临床前筛查
  • 批准号:
    10439886
  • 财政年份:
    2021
  • 资助金额:
    $ 23.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了