RadxTools for assessing tumor treatment response on imaging
用于评估影像学肿瘤治疗反应的 RadxTools
基本信息
- 批准号:10593646
- 负责人:
- 金额:$ 23.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdjuvantAdultAffectAwardBiophysicsBrain NeoplasmsCellsCharacteristicsChildChildhood Brain NeoplasmChildhood MedulloblastomasClinicalClinical stratificationCommunitiesDataDescriptorDevelopmentDoseEntropyEtiologyExcisionFoundationsFutureGoalsHeterogeneityHistologyImageInformaticsMRI ScansMagnetic Resonance ImagingMalignant - descriptorMalignant Childhood NeoplasmMetastatic Neoplasm to the LeptomeningesModelingMolecularMorbidity - disease rateOperative Surgical ProceduresOutcomePatientsPediatric HospitalsPediatric cohortPrognosisQuality of lifeRadxToolsResidual TumorsRiskShapesStratificationSubgroupSurvival RateTechnologyTextureTreatment ProtocolsUnited States National Institutes of HealthVasodilationWorkanticancer researchbasebrain parenchymachemotherapyclinical careclinical riskhigh riskimprovedindexingirradiationlong-term sequelaemedulloblastomaprognosticationradiomicsrisk stratificationtooltreatment responsetreatment strategytumor
项目摘要
ABSTRACT: Medulloblastoma (MB) is a malignant, fast-growing pediatric brain tumor with heterogenous
outcomes and a 5-year survival rate of 70-80%. Current treatment strategies for MB patients include surgical
resection, chemotherapy, and craniospinal irradiation (CSI), with dose-intensification in high-risk patients
(defined as residual tumor >1.5 cm2, evidence of leptomeningeal metastases, or large-cell/anaplastic histology)
to improve clinical outcomes, while de-escalation of therapy to reduce long-term sequelae in standard-risk MB
patients. Unfortunately, this treatment protocol has only proven useful as a rough guide for predicting
prognosis with the existing clinical stratification; particularly, the 5-year survival rate for the high-risk patients
are currently at about 60%. Additionally, the existing clinical risk stratification fails to identify about 20–30% of
standard-risk patients who might be overtreated and eventually suffer from long-term morbidities that
significantly affect their quality of life. Consequently, there is a critical need for reliable tools to risk-stratify MB
patients based on their survival, with the goal of identifying high-risk MB cases who are most likely to receive
added benefit from adjuvant and concomitant therapy, while de-escalating therapy in low/standard-risk cases.
Through an ongoing NCI U01 award (1U01CA248226-01) from the Informatics Technology for Cancer
Research (ITCR), our group has been leading the development of peri-tumoral (Eur. Rad 20172, AJNR 20183)
and intra-tumoral spatial heterogeneity radiomics, that go beyond texture, shape-based approaches, for
characterization of adult tumors. As an extension to our U01 efforts, in this supplemental project, we propose
to develop two informatics modules for (1) radiomic analysis for tumor characterization on clinical MRI scans
(Gd-T1w, T2w, FLAIR), and (2) a risk-stratification module, for survival risk-stratification of pediatric MB patients.
In our preliminary work, we demonstrated that our biophysical deformation descriptor that characterizes subtle
changes in vasodilation from brain parenchyma on Gd-T1w MRI scans, had higher concordance-index (C-
index) in predicting overall survival in MB patients compared to employing the molecular subgroup-based
stratification [n=89, p<0.05 vs. p=0.6, C-index=0.831 vs. 0.80]. The 2 modules developed in our supplement
project will be leveraged to improve on our initial model (using deformations alone), to (a) include features
relating to (1) 3D topology, (2) localized entropy, and (3) peri-tumoral features from the vicinity of the tumor and
(b) perform MRI-based risk-stratification of MB patients based on their survival characteristics, independent of
molecular stratification. Our collaborative efforts with Children's Hospital Cinncinati, Nationawide Childrens
Columbus, and Children's Brain Tumor Network, will led to creation of a rich, one-of-the-largest MB cohorts for
the pediatric cancer community and will serve as the foundation of ongoing and future studies focused on
resolving MB aetiology. Following successful completion, we will make the multi-institutional studies and the
associated mRRisc features publicly available by leveraging ongoing efforts through ITCR.
摘要:髓母细胞瘤(MB)是一种恶性、快速生长的小儿脑肿瘤,
5年生存率为70- 80%。MB患者的当前治疗策略包括手术
切除、化疗和颅脊髓照射(CSI),在高危患者中进行剂量强化
(定义为残留肿瘤>1.5 cm 2、软脑膜转移证据或大细胞/间变性组织学)
改善临床结局,同时降低治疗水平以减少标准风险MB的长期后遗症
患者不幸的是,这种治疗方案只被证明是一个粗略的指导,
预后与现有的临床分层;特别是,5年生存率的高风险患者
目前约为60%。此外,现有的临床风险分层未能识别约20-30%的
标准风险患者可能会接受过度治疗并最终患上长期疾病,
严重影响他们的生活质量。因此,迫切需要可靠的工具对甲基溴进行风险分层
患者的生存率,目的是确定最有可能接受
辅助治疗和伴随治疗的额外获益,而在低/标准风险病例中的递减治疗。
通过癌症信息技术正在进行的NCI U 01奖(1U 01 CA 248226 -01)
研究(ITCR),我们的小组一直领导着肿瘤周围(Eur. Rad 20172,AJNR 20183)
和肿瘤内空间异质性放射组学,超越了纹理,基于形状的方法,
成人肿瘤的特征。作为我们U 01工作的延伸,在这个补充项目中,我们建议
开发两个信息学模块,用于(1)临床MRI扫描肿瘤表征的放射组学分析
(Gd-T1 w,T2 w,FLAIR),和(2)风险分层模块,用于儿童MB患者的生存风险分层。
在我们的初步工作中,我们证明了我们的生物物理变形描述符,
在Gd-T1 w MRI扫描上,脑实质血管舒张的变化具有较高的一致性指数(C-
指数)预测MB患者的总生存率,与采用基于分子亚组的
分层[n=89,p<0.05 vs. p=0.6,C指数=0.831 vs. 0.80]。在我们的补充中开发的2个模块
项目将利用我们的初始模型(仅使用变形)进行改进,以(a)包括功能
涉及(1)3D拓扑,(2)局部熵,和(3)来自肿瘤附近的肿瘤周围特征,
(b)根据MB患者的生存特征,对MB患者进行基于MRI的风险分层,独立于
分子分层我们与Cinncinati儿童医院、全国儿童医院、
哥伦布和儿童脑肿瘤网络,将导致创建一个丰富的,最大的MB队列之一,
儿童癌症社区,并将作为正在进行和未来研究的基础,重点是
解决MB病因。在成功完成后,我们将进行多机构研究和
相关mRRisc功能通过ITCR利用正在进行的工作公开提供。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Introduction to radiomics and radiogenomics in neuro-oncology: implications and challenges.
- DOI:10.1093/noajnl/vdaa148
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Beig N;Bera K;Tiwari P
- 通讯作者:Tiwari P
Can Tumor Location on Pre-treatment MRI Predict Likelihood of Pseudo-Progression vs. Tumor Recurrence in Glioblastoma?-A Feasibility Study.
- DOI:10.3389/fncom.2020.563439
- 发表时间:2020
- 期刊:
- 影响因子:3.2
- 作者:Ismail M;Hill V;Statsevych V;Mason E;Correa R;Prasanna P;Singh G;Bera K;Thawani R;Ahluwalia M;Madabhushi A;Tiwari P
- 通讯作者:Tiwari P
Identifying Cross-Scale Associations between Radiomic and Pathomic Signatures of Non-Small Cell Lung Cancer Subtypes: Preliminary Results.
- DOI:10.3390/cancers12123663
- 发表时间:2020-12-07
- 期刊:
- 影响因子:5.2
- 作者:Alvarez-Jimenez C;Sandino AA;Prasanna P;Gupta A;Viswanath SE;Romero E
- 通讯作者:Romero E
Opportunities and Advances in Radiomics and Radiogenomics for Pediatric Medulloblastoma Tumors.
小儿髓母细胞瘤肿瘤的放射组学和放射基因组学的机会和进步。
- DOI:10.3390/diagnostics13172727
- 发表时间:2023-08-22
- 期刊:
- 影响因子:3.6
- 作者:Ismail, Marwa;Craig, Stephen;Ahmed, Raheel;de Blank, Peter;Tiwari, Pallavi
- 通讯作者:Tiwari, Pallavi
Region-specific deep learning models for accurate segmentation of rectal structures on post-chemoradiation T2w MRI: a multi-institutional, multi-reader study.
- DOI:10.3389/fmed.2023.1149056
- 发表时间:2023
- 期刊:
- 影响因子:3.9
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pallavi Tiwari其他文献
Pallavi Tiwari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pallavi Tiwari', 18)}}的其他基金
Artificial Intelligence-based decision support for chemotherapy-response assessment in Brain Tumors
基于人工智能的脑肿瘤化疗反应评估决策支持
- 批准号:
10589512 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别:
RadxTools for assessing tumor treatment response on imaging
用于评估影像学肿瘤治疗反应的 RadxTools
- 批准号:
10477947 - 财政年份:2020
- 资助金额:
$ 23.4万 - 项目类别:
RadxTools for assessing tumor treatment response on imaging
用于评估影像学肿瘤治疗反应的 RadxTools
- 批准号:
10206077 - 财政年份:2020
- 资助金额:
$ 23.4万 - 项目类别:
相似海外基金
Metachronous synergistic effects of preoperative viral therapy and postoperative adjuvant immunotherapy via long-term antitumor immunity
术前病毒治疗和术后辅助免疫治疗通过长期抗肿瘤免疫产生异时协同效应
- 批准号:
23K08213 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving the therapeutic immunity of cancer vaccine with multi-adjuvant polymeric nanoparticles
多佐剂聚合物纳米粒子提高癌症疫苗的治疗免疫力
- 批准号:
2881726 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别:
Studentship
Evaluation of the Sensitivity to Endocrine Therapy (SET ER/PR) Assay to predict benefit from extended duration of adjuvant endocrine therapy in the NSABP B-42 trial
NSABP B-42 试验中内分泌治疗敏感性 (SET ER/PR) 测定的评估,用于预测延长辅助内分泌治疗持续时间的益处
- 批准号:
10722146 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别:
Countering sympathetic vasoconstriction during skeletal muscle exercise as an adjuvant therapy for DMD
骨骼肌运动期间对抗交感血管收缩作为 DMD 的辅助治疗
- 批准号:
10735090 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别:
AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
- 批准号:
10933287 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别:
DEVELOPMENT OF SAS A SYNTHETIC AS01-LIKE ADJUVANT SYSTEM FOR INFLUENZA VACCINES
流感疫苗类 AS01 合成佐剂系统 SAS 的开发
- 批准号:
10935776 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别:
DEVELOPMENT OF SMALL-MOLECULE DUAL ADJUVANT SYSTEM FOR INFLUENZA VIRUS VACCINE
流感病毒疫苗小分子双佐剂体系的研制
- 批准号:
10935796 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别:
A GLYCOLIPID ADJUVANT 7DW8-5 FOR MALARIA VACCINES
用于疟疾疫苗的糖脂佐剂 7DW8-5
- 批准号:
10935775 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别:
Adjuvant strategies for universal and multiseasonal influenza vaccine candidates in the context of pre-existing immunity
在已有免疫力的情况下通用和多季节流感候选疫苗的辅助策略
- 批准号:
10649041 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别:
Adjuvant Photodynamic Therapy to Reduce Bacterial Bioburden in High-Energy Contaminated Open Fractures
辅助光动力疗法可减少高能污染开放性骨折中的细菌生物负载
- 批准号:
10735964 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别: