National Cohort Studies of Alzheimer's Disease, Related Dementias and Air Pollution

阿尔茨海默病、相关痴呆症和空气污染的国家队列研究

基本信息

  • 批准号:
    10594215
  • 负责人:
  • 金额:
    $ 23.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2025-11-30
  • 项目状态:
    未结题

项目摘要

Project Summary Background. The specific aims of the parent grant (R01 AG066793) are to conduct national epidemiological studies of Medicare and Medicaid claims to estimate the effects of long-term exposures to air pollution on Alzheimer’s disease (AD) and related dementias (ADRD) hospitalization and disease progression (Aim 1), to apply machine learning methods to identify co-occurrence of individual-level, environmental, and societal factors that lead to increase vulnerability (Aim 2), and to develop statistical methods to disentangle the effects of air pollution exposure from other confounding factors and to correct for potential outcome misclassification (Aim 3). The parent R01 relies on a wide range of epidemiological data ranging from environmental exposures, to claims data, to meteorological and socioeconomic factors. While we curated massive amounts of data for the parent R01, the data has not been deposited to a public data repository and we have not made it publicly available. Overall Goals. With this supplement our goal is to enable effective dissemination and reuse for high-dimensional high-volume data, including the data products from the parent R01. These goals will be achieved by forming a new collaboration and partnership with Harvard dataverse, expanding their current capacity to store and share geospatial public health data. Our specific aims are to: implement automatic metadata extraction for high dimensional dataset formats NetCDF and HDF5 (Aim 1), implement an integration with Jupyter Binder that allows exploration and viewing of complex high-dimensional data from Dataverse (Aim 2), enhance reuse, community engagement and reproducibility of R01 research with the demonstration of data analysis using synthetic CMS claims data (Aim 3). Impact. Each new feature in the Dataverse software platform, such as the ones proposed in Aims 1 and 2, is typically propagated to all 77 Dataverse installations, which enhances their impact worldwide. Dataverse also has a vibrant community of open-source contributors and digital libraries, and organizes annual community meetings at Harvard that last for several days. We will use this platform to promote the work in this supplement and engage the community and attend other workshops and conferences with the same goal. We will closely follow the impact of these developments through an existing Dataverse collaboration with the Make Data Count project, which provides usage metrics standardization (such as the number of views, downloads, and citations of data), and enables us to self-modify and improve our data releases. This supplement will also have a direct impact on the parent R01, enhancing reuse, community engagement and reproducibility which will in turn lead to more robust epidemiological conclusions (Aim 3).
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Antonella Zanobetti其他文献

Antonella Zanobetti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Antonella Zanobetti', 18)}}的其他基金

National Cohort Studies of Alzheimer's Disease, Related Dementias and Air Pollution
阿尔茨海默病、相关痴呆症和空气污染的国家队列研究
  • 批准号:
    10467527
  • 财政年份:
    2020
  • 资助金额:
    $ 23.82万
  • 项目类别:
National Cohort Studies of Alzheimer's Disease, Related Dementias and Air Pollution
阿尔茨海默病、相关痴呆症和空气污染的国家队列研究
  • 批准号:
    10338186
  • 财政年份:
    2020
  • 资助金额:
    $ 23.82万
  • 项目类别:
Cardiovascular Health and Air Pollution: A National Study
心血管健康与空气污染:一项全国研究
  • 批准号:
    9773345
  • 财政年份:
    2015
  • 资助金额:
    $ 23.82万
  • 项目类别:
Cardiovascular Health and Air Pollution: A National Study
心血管健康与空气污染:一项全国研究
  • 批准号:
    9230837
  • 财政年份:
    2015
  • 资助金额:
    $ 23.82万
  • 项目类别:
Cardiovascular Health and Air Pollution: A National Study
心血管健康与空气污染:一项全国研究
  • 批准号:
    9055691
  • 财政年份:
    2015
  • 资助金额:
    $ 23.82万
  • 项目类别:
Cardiovascular Health and Air Pollution: A National Study
心血管健康与空气污染:一项全国研究
  • 批准号:
    8885032
  • 财政年份:
    2015
  • 资助金额:
    $ 23.82万
  • 项目类别:
Chronic effects of weather fluctuations: population susceptibility and adaptation
天气波动的慢性影响:人群的易感性和适应
  • 批准号:
    8914624
  • 财政年份:
    2014
  • 资助金额:
    $ 23.82万
  • 项目类别:
Chronic effects of weather fluctuations: population susceptibility and adaptation
天气波动的慢性影响:人群的易感性和适应
  • 批准号:
    8695767
  • 财政年份:
    2014
  • 资助金额:
    $ 23.82万
  • 项目类别:
Project 1: Multi-Exposure Epidemiology Across the Life Course
项目 1:生命历程中的多重暴露流行病学
  • 批准号:
    9270435
  • 财政年份:
  • 资助金额:
    $ 23.82万
  • 项目类别:
Project 1: Multi-Exposure Epidemiology Across the Life Course
项目 1:生命历程中的多重暴露流行病学
  • 批准号:
    9242789
  • 财政年份:
  • 资助金额:
    $ 23.82万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 23.82万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 23.82万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 23.82万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 23.82万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 23.82万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 23.82万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 23.82万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 23.82万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 23.82万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.82万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了