Curating musculoskeletal CT data to enable the development of AI/ML approaches for analysis of clinical CT in patients with metastatic spinal disease

整理肌肉骨骼 CT 数据,以开发用于分析转移性脊柱疾病患者临床 CT 的 AI/ML 方法

基本信息

  • 批准号:
    10593799
  • 负责人:
  • 金额:
    $ 35.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract Vertebral bone metastases, widespread in patients with cancer, destroy vertebral anatomy, bone architecture, and mechanical strength, exposing patients to a high risk of pathologic vertebral fracture (PVF). PVFs cause neurological deficits in up to 50% of patients with further complications that may be fatal. Our parent grant (AR075964) develops and validates a novel computational musculoskeletal approach for patient-specific, precise prediction of PVF risk from clinical CT. Segmentation of vertebral anatomy, bone properties, and individual spinal musculature cross-sectional area from clinical CT imaging, a fundamental step for assembling the computational musculoskeletal models, faces unique challenges due to the cancer-mediated alteration in skeletal tissues radiological appearance. Application of deep learning (DL) methods will speed and standardize the critical segmentation step, permitting analysis of larger datasets promoting new DL analysis for improved insight into the drivers of PVF risk in patients with metastatic spine disease. This development is hindered by the lack of publicly available, clinically annotated image data specific to metastatic human spines. This proposal aims to establish a curated, publicly accessible, 4D CT imaging dataset of human metastatic spines and associated radiological delineations of lesions and vertebral features, to enable the advancement of DL methods to analyze PVF risk. We thus propose three specific aims: 1) prepare the CT dataset for the application of deep learning: Our data is based on our parent grant (AR075964) de-identified spinal column and thoracoabdominal muscles CT image datasets obtained from 140 patients at radiation planning and additional CT diagnostic data at 3, 6, 9, and 12 months follow up (1400 image data sets overall). We will assemble and curate the data for public distribution by a) preprocessing the CT images for machine learning applications, b) delineating the vertebrae, lesions, and muscles in the images, c) assembling metadata, including limited subject demographic and disease status into JSON files, and d) extract SIFT features for computer-vision style analyses. 2) Testbed Deep Learning (DL) Segmentation: To ensure that the curated data set is suitable for training artificial intelligence and machine learning (AI/ML) systems, we will develop and train testbed DL segmentation networks to segment bones, lesions, and muscles in baseline and follow-up clinical CT. We will use the networks to control the quality the curated CT images and delineations, 3) Disseminate 4D dataset following best practices: Upon completion of tasks 1 and 2, we will make the data available to the research community via the Cancer Image Archive (TCIA) following their established methods for de-identifying DICOM scans and annotating and encoding clinical data and analysis results. Integrating DL systems within our approach will change the patient management paradigm from reactive to data-driven proactive management to prevent PVF events and critically reduce bias in patient management.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RON N ALKALAY其他文献

RON N ALKALAY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('RON N ALKALAY', 18)}}的其他基金

Predicting Fracture Risk in Patients Treated with Radiotherapy for Spinal Metastatic Disease
预测脊柱转移性疾病放射治疗患者的骨折风险
  • 批准号:
    10655309
  • 财政年份:
    2020
  • 资助金额:
    $ 35.23万
  • 项目类别:
Predicting Fracture Risk in Patients Treated with Radiotherapy for Spinal Metastatic Disease
预测脊柱转移性疾病放射治疗患者的骨折风险
  • 批准号:
    10392406
  • 财政年份:
    2020
  • 资助金额:
    $ 35.23万
  • 项目类别:
Predicting Fracture Risk in Patients Treated with Radiotherapy for Spinal Metastatic Disease
预测脊柱转移性疾病放射治疗患者的骨折风险
  • 批准号:
    10002563
  • 财政年份:
    2019
  • 资助金额:
    $ 35.23万
  • 项目类别:
Pre-Operative QCT Planning Protocol for Treating the Structural Deficiency of Spi
治疗 SPI 结构缺陷的术前 QCT 规划方案
  • 批准号:
    8066432
  • 财政年份:
    2008
  • 资助金额:
    $ 35.23万
  • 项目类别:
Pre-Operative QCT Planning Protocol for Treating the Structural Deficiency of Spi
治疗 SPI 结构缺陷的术前 QCT 规划方案
  • 批准号:
    7475488
  • 财政年份:
    2008
  • 资助金额:
    $ 35.23万
  • 项目类别:
Pre-Operative QCT Planning Protocol for Treating the Structural Deficiency of Spi
治疗 SPI 结构缺陷的术前 QCT 规划方案
  • 批准号:
    7651104
  • 财政年份:
    2008
  • 资助金额:
    $ 35.23万
  • 项目类别:
Pre-Operative QCT Planning Protocol for Treating the Structural Deficiency of Spi
治疗 SPI 结构缺陷的术前 QCT 规划方案
  • 批准号:
    7806546
  • 财政年份:
    2008
  • 资助金额:
    $ 35.23万
  • 项目类别:

相似海外基金

ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
  • 批准号:
    10935820
  • 财政年份:
    2023
  • 资助金额:
    $ 35.23万
  • 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
  • 批准号:
    10932514
  • 财政年份:
    2023
  • 资助金额:
    $ 35.23万
  • 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
  • 批准号:
    10704845
  • 财政年份:
    2023
  • 资助金额:
    $ 35.23万
  • 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
  • 批准号:
    10709085
  • 财政年份:
    2023
  • 资助金额:
    $ 35.23万
  • 项目类别:
Advanced Development of Gemini-DHAP
Gemini-DHAP的高级开发
  • 批准号:
    10760050
  • 财政年份:
    2023
  • 资助金额:
    $ 35.23万
  • 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
  • 批准号:
    10409385
  • 财政年份:
    2022
  • 资助金额:
    $ 35.23万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
  • 批准号:
    10710595
  • 财政年份:
    2022
  • 资助金额:
    $ 35.23万
  • 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
  • 批准号:
    10630975
  • 财政年份:
    2022
  • 资助金额:
    $ 35.23万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
  • 批准号:
    10710588
  • 财政年份:
    2022
  • 资助金额:
    $ 35.23万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
  • 批准号:
    10788051
  • 财政年份:
    2022
  • 资助金额:
    $ 35.23万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了