Curating musculoskeletal CT data to enable the development of AI/ML approaches for analysis of clinical CT in patients with metastatic spinal disease
整理肌肉骨骼 CT 数据,以开发用于分析转移性脊柱疾病患者临床 CT 的 AI/ML 方法
基本信息
- 批准号:10593799
- 负责人:
- 金额:$ 35.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:Administrative SupplementAdvanced DevelopmentAffectAgeAnatomyAppearanceArchitectureAreaArtificial IntelligenceBiologicalBiological MarkersCachexiaCancer PatientClassificationClinicalClinical DataCommunitiesComplexComputer Vision SystemsDataData AnalysesData CollectionData SetDatabasesDevelopmentDiagnosticDigital Imaging and Communications in MedicineDiseaseDisease ProgressionEnsureEventEvolutionFaceFractureGuidelinesHumanImageIndividualLabelLesionMachine LearningMalignant NeoplasmsMalnutritionManualsMechanicsMediatingMetabolicMetadataMetastatic Neoplasm to the BoneMetastatic toMethodsModelingMorbidity - disease rateMuscleMuscular AtrophyMusculoskeletalNeoplasm MetastasisNeurologic DeficitPainPathologicPatient CarePatientsPhysical FunctionPropertyQuality ControlRadiationRadiation therapyRadiology SpecialtyReadinessResearchResearch PersonnelResolutionRiskScanningSensitivity and SpecificitySkeletal MuscleSpeedSpinalSpinal DiseasesSpinal FracturesStandardizationSystemThe Cancer Imaging ArchiveTissuesTrainingUnnecessary ProceduresVertebral BoneVertebral columnX-Ray Computed Tomographybaseboneclinical careclinical riskclinically significantcostdeep learningfollow-upfracture riskhigh riskimprovedinsightlarge datasetslearning strategymachine learning modelmuscle formnovelpalliativeparent grantpredictive markerpreventradiological imagingsarcopeniasexskeletal tissuespine bone structuretreatment optimization
项目摘要
Project Summary/Abstract
Vertebral bone metastases, widespread in patients with cancer, destroy vertebral anatomy, bone architecture,
and mechanical strength, exposing patients to a high risk of pathologic vertebral fracture (PVF). PVFs cause
neurological deficits in up to 50% of patients with further complications that may be fatal. Our parent grant
(AR075964) develops and validates a novel computational musculoskeletal approach for patient-specific,
precise prediction of PVF risk from clinical CT. Segmentation of vertebral anatomy, bone properties, and
individual spinal musculature cross-sectional area from clinical CT imaging, a fundamental step for assembling
the computational musculoskeletal models, faces unique challenges due to the cancer-mediated alteration in
skeletal tissues radiological appearance. Application of deep learning (DL) methods will speed and standardize
the critical segmentation step, permitting analysis of larger datasets promoting new DL analysis for improved
insight into the drivers of PVF risk in patients with metastatic spine disease. This development is hindered by the
lack of publicly available, clinically annotated image data specific to metastatic human spines.
This proposal aims to establish a curated, publicly accessible, 4D CT imaging dataset of human metastatic
spines and associated radiological delineations of lesions and vertebral features, to enable the advancement of
DL methods to analyze PVF risk. We thus propose three specific aims: 1) prepare the CT dataset for the
application of deep learning: Our data is based on our parent grant (AR075964) de-identified spinal column and
thoracoabdominal muscles CT image datasets obtained from 140 patients at radiation planning and additional
CT diagnostic data at 3, 6, 9, and 12 months follow up (1400 image data sets overall). We will assemble and
curate the data for public distribution by a) preprocessing the CT images for machine learning applications, b)
delineating the vertebrae, lesions, and muscles in the images, c) assembling metadata, including limited subject
demographic and disease status into JSON files, and d) extract SIFT features for computer-vision style analyses.
2) Testbed Deep Learning (DL) Segmentation: To ensure that the curated data set is suitable for training artificial
intelligence and machine learning (AI/ML) systems, we will develop and train testbed DL segmentation networks
to segment bones, lesions, and muscles in baseline and follow-up clinical CT. We will use the networks to control
the quality the curated CT images and delineations, 3) Disseminate 4D dataset following best practices: Upon
completion of tasks 1 and 2, we will make the data available to the research community via the Cancer Image
Archive (TCIA) following their established methods for de-identifying DICOM scans and annotating and encoding
clinical data and analysis results. Integrating DL systems within our approach will change the patient
management paradigm from reactive to data-driven proactive management to prevent PVF events and critically
reduce bias in patient management.
项目总结/摘要
椎体骨转移,广泛存在于癌症患者中,破坏椎体解剖结构、骨结构,
和机械强度,使患者面临病理性椎体骨折(PVF)的高风险。PVF原因
高达50%的患者出现神经功能缺损,并伴有可能致命的进一步并发症。我们的家长grant
(AR 075964)开发并验证了一种新的计算肌肉骨骼方法,
根据临床CT准确预测PVF风险。分割椎骨解剖结构、骨特性和
从临床CT成像中获得的单个脊柱肌肉组织横截面积,
计算肌肉骨骼模型,面临着独特的挑战,由于癌症介导的改变,
骨骼组织放射学表现。深度学习(DL)方法的应用将加速和标准化
关键的分割步骤,允许分析更大的数据集,促进新的DL分析,以改善
深入了解转移性脊柱疾病患者PVF风险的驱动因素。这一发展受到阻碍,
缺乏公开可用的、临床注释的、针对转移性人脊柱的图像数据。
该提案旨在建立一个精心策划的、可公开访问的人类转移性肿瘤的4D CT成像数据集。
脊柱和病变和椎体特征的相关放射学描绘,以使
分析PVF风险的DL方法。因此,我们提出了三个具体目标:1)准备CT数据集,
深度学习的应用:我们的数据是基于我们的父母资助(AR 075964)去识别脊柱和
从140名患者在放射计划时获得的胸腹肌CT图像数据集和额外的
3、6、9和12个月随访时的CT诊断数据(总共1400个图像数据集)。我们将集合起来,
通过a)预处理用于机器学习应用的CT图像,B)
描绘图像中的椎骨、病变和肌肉,c)组装元数据,包括有限的主题
将人口统计和疾病状态转换为JSON文件,以及d)提取SIFT特征用于计算机视觉风格分析。
2)测试床深度学习(DL)分割:确保策划的数据集适合训练人工
智能和机器学习(AI/ML)系统,我们将开发和训练测试床DL分割网络
在基线和随访临床CT中分割骨骼、病变和肌肉。我们将利用网络来控制
策划的CT图像和描绘的质量,3)按照最佳实践传播4D数据集:
完成任务1和2后,我们将通过癌症图像向研究界提供数据
存档(TCIA)遵循其已建立的方法,用于去识别DICOM扫描以及注释和编码
临床数据和分析结果。在我们的方法中集成DL系统将改变患者
管理模式从被动式管理转变为数据驱动的主动式管理,以防止PVF事件,
减少患者管理中的偏差。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RON N ALKALAY其他文献
RON N ALKALAY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RON N ALKALAY', 18)}}的其他基金
Predicting Fracture Risk in Patients Treated with Radiotherapy for Spinal Metastatic Disease
预测脊柱转移性疾病放射治疗患者的骨折风险
- 批准号:
10655309 - 财政年份:2020
- 资助金额:
$ 35.23万 - 项目类别:
Predicting Fracture Risk in Patients Treated with Radiotherapy for Spinal Metastatic Disease
预测脊柱转移性疾病放射治疗患者的骨折风险
- 批准号:
10392406 - 财政年份:2020
- 资助金额:
$ 35.23万 - 项目类别:
Predicting Fracture Risk in Patients Treated with Radiotherapy for Spinal Metastatic Disease
预测脊柱转移性疾病放射治疗患者的骨折风险
- 批准号:
10002563 - 财政年份:2019
- 资助金额:
$ 35.23万 - 项目类别:
Pre-Operative QCT Planning Protocol for Treating the Structural Deficiency of Spi
治疗 SPI 结构缺陷的术前 QCT 规划方案
- 批准号:
8066432 - 财政年份:2008
- 资助金额:
$ 35.23万 - 项目类别:
Pre-Operative QCT Planning Protocol for Treating the Structural Deficiency of Spi
治疗 SPI 结构缺陷的术前 QCT 规划方案
- 批准号:
7475488 - 财政年份:2008
- 资助金额:
$ 35.23万 - 项目类别:
Pre-Operative QCT Planning Protocol for Treating the Structural Deficiency of Spi
治疗 SPI 结构缺陷的术前 QCT 规划方案
- 批准号:
7651104 - 财政年份:2008
- 资助金额:
$ 35.23万 - 项目类别:
Pre-Operative QCT Planning Protocol for Treating the Structural Deficiency of Spi
治疗 SPI 结构缺陷的术前 QCT 规划方案
- 批准号:
7806546 - 财政年份:2008
- 资助金额:
$ 35.23万 - 项目类别:
相似海外基金
ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
- 批准号:
10935820 - 财政年份:2023
- 资助金额:
$ 35.23万 - 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
- 批准号:
10932514 - 财政年份:2023
- 资助金额:
$ 35.23万 - 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
- 批准号:
10704845 - 财政年份:2023
- 资助金额:
$ 35.23万 - 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
- 批准号:
10709085 - 财政年份:2023
- 资助金额:
$ 35.23万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10409385 - 财政年份:2022
- 资助金额:
$ 35.23万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10710595 - 财政年份:2022
- 资助金额:
$ 35.23万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 35.23万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
- 批准号:
10710588 - 财政年份:2022
- 资助金额:
$ 35.23万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10788051 - 财政年份:2022
- 资助金额:
$ 35.23万 - 项目类别:














{{item.name}}会员




