Dopamine modulation for the treatment of chronic dysfunction due to traumatic brain injury
多巴胺调节治疗创伤性脑损伤引起的慢性功能障碍
基本信息
- 批准号:10594159
- 负责人:
- 金额:$ 24.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-15 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAnimalsAttentionBehaviorBehavioralChronicClinicalClinical DataDataData SetDecision MakingDiscriminationDopamineExperimental DesignsFunctional disorderGoalsGrantGroupingImpulsivityIndividualInjuryInterventionMachine LearningMultiple TraumaPathologyPharmacological TreatmentRattusResearch PersonnelRisk FactorsSeveritiesShapesStandardizationTBI treatmentTechniquesTestingTrainingTraumatic Brain InjuryValidationbaseimprovedlarge datasetsmultidimensional datamultiple datasetsnovelplacebo grouppre-clinicalresiliencesupervised learningunsupervised learning
项目摘要
Project Summary/Abstract
The current supplement to an R01 grant will augment the initial project. As a result of the initial R01 project, we
have completed multiple datasets describing deficits in attention, impulsivity, and decision-making after traumatic
brain injury (TBI) in rats. This resulted in millions of lines of data across individual studies – a rare phenomenon
for animal TBI. The goal of the current supplement is to compile these into two large datasets for multidimensional
analytics and apply cutting-edge machine learning techniques to determine if behavior and pathology can
discriminate groupings (e.g., TBI from sham) and what factors determine individual vulnerability and resilience
to injury. One dataset will comprise risky decision-making and have roughly 1.5 million lines of data, with
approximately 70% corresponding to “pure” sham or TBI conditions (i.e., no other interventions). The second
dataset will have roughly 850,000 lines of data, with approximately 80% corresponding to “pure” sham or TBI
conditions, and with multiple injury severities. We will apply supervised machine learning techniques to validate
discrimination of injury from sham groups based on behavior alone, or pathophysiology, and then test the most
robust algorithms against smaller subpopulations which received an intervention (e.g., pharmacological
treatment). We will also use unsupervised machine learning techniques to identify subpopulations within the TBI
group, particularly with reference to vulnerability and resilience. For each of these approaches, we will compare
a large battery of algorithms to determine which are strongest or provide the greatest utility. With large datasets
such as this, we can subdivide into training, testing, and validation sets to maximize rigor. This is a unique
opportunity because robust, standardized behavioral datasets such as this are rare in preclinical TBI. This will
allow us to better align clinical and pre-clinical data, identify risk factors and potential treatment avenues, and
improve the utility of machine learning for the study and treatment of TBI. The harmonized datasets will be made
publicly available to enable other researchers to explore novel questions and shape experimental design.
项目总结/摘要
目前对R 01赠款的补充将扩大最初的项目。作为最初的R 01项目的结果,
我已经完成了多个数据集,描述了创伤后注意力、冲动和决策方面的缺陷。
脑损伤(TBI)。这导致了个体研究中数百万行的数据-这是一种罕见的现象
动物创伤性脑损伤当前补充的目标是将这些数据编译成两个大型数据集,
分析和应用尖端的机器学习技术,以确定行为和病理是否可以
区分分组(例如,哪些因素决定了个体的脆弱性和复原力
受伤。一个数据集将包括风险决策,大约有150万行数据,
大约70%对应于“纯”假手术或TBI条件(即,没有其他发言)。第二
一个数据集将有大约850,000行数据,其中大约80%对应于“纯”假手术或TBI
条件,并与多处损伤的严重程度。我们将应用监督机器学习技术来验证
仅根据行为或病理生理学区分损伤与假组,然后测试最多的
针对接受干预的较小亚群的鲁棒算法(例如,药理
治疗)。我们还将使用无监督机器学习技术来识别TBI中的亚群
特别是在脆弱性和复原力方面。对于每一种方法,我们将比较
一个大的算法电池,以确定哪些是最强的或提供最大的效用。大型数据集
例如,我们可以细分为训练、测试和验证集,以最大限度地提高严谨性。这是一个独特
机会,因为像这样强大、标准化的行为数据集在临床前TBI中很少见。这将
使我们能够更好地调整临床和临床前数据,识别风险因素和潜在的治疗途径,
提高机器学习在TBI研究和治疗中的效用。将制作统一的数据集,
公开提供,使其他研究人员能够探索新的问题和形状的实验设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cole Vonder Haar其他文献
Cole Vonder Haar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cole Vonder Haar', 18)}}的其他基金
Dopamine modulation for the treatment of chronic dysfunction due to traumatic brain injury
多巴胺调节治疗创伤性脑损伤引起的慢性功能障碍
- 批准号:
10163928 - 财政年份:2019
- 资助金额:
$ 24.1万 - 项目类别:
Dopamine modulation for the treatment of chronic dysfunction due to traumatic brain injury
多巴胺调节治疗创伤性脑损伤引起的慢性功能障碍
- 批准号:
10400280 - 财政年份:2019
- 资助金额:
$ 24.1万 - 项目类别:
Dopamine modulation for the treatment of chronic dysfunction due to traumatic brain injury
多巴胺调节治疗创伤性脑损伤引起的慢性功能障碍
- 批准号:
10616545 - 财政年份:2019
- 资助金额:
$ 24.1万 - 项目类别:
Dopamine modulation for the treatment of chronic dysfunction due to traumatic brain injury
多巴胺调节治疗创伤性脑损伤引起的慢性功能障碍
- 批准号:
10426388 - 财政年份:2019
- 资助金额:
$ 24.1万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 24.1万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 24.1万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 24.1万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 24.1万 - 项目类别:
Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
- 批准号:
2889694 - 财政年份:2023
- 资助金额:
$ 24.1万 - 项目类别:
Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 24.1万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 24.1万 - 项目类别:
Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 24.1万 - 项目类别:
Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 24.1万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 24.1万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)