Spinal Fusion Implant with Embedded Biomechanically Powered Sensor
带有嵌入式生物力学驱动传感器的脊柱融合植入物
基本信息
- 批准号:10603735
- 负责人:
- 金额:$ 27.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AreaBackBack PainBiofeedbackBiomechanicsBone GrowthBone structureCOVID-19CalibrationClinicalCollectionComputer softwareCustomDataDevelopmentDevicesElectric StimulationElectrodesEnsureEnvironmentExcisionFailureFrequenciesFundingFutureGoalsGrowthHarvestHealth Care CostsHealth PersonnelHumanHuman bodyImageImplantIn SituIndustryLinear RegressionsMeasuresMechanicsMedicalMethodsMiniaturizationMonitorMotionOffice VisitsOperative Surgical ProceduresOutcomeOutcome MeasureOutputPainPatient CarePatient Outcomes AssessmentsPatient Self-ReportPatient-Focused OutcomesPatientsPersonsPhasePhysiciansPhysiologic pulsePhysiologicalPopulationPostoperative PeriodProcessPublishingReportingRiskRisk ReductionRuralSafetySheepSignal TransductionSiteSmall Business Innovation Research GrantSmokerSpinalSpinal FusionSurfaceSurgeonTechnologyTestingTextureTimeTranslatingValidationVertebral columnVisitWalkingWorkX-Ray Computed TomographyX-Ray Medical Imagingbasebiomaterial compatibilitybonebone healingcare costscommercializationconditioningcostcost effectivedata acquisitiondata exchangedata toolsdesigndiabeticearly phase clinical trialelectric impedanceexperiencehealinghealth care availabilityimplantable deviceimprovedin vivomechanical loadmedical implantminiaturizemobile applicationpreventprototypesensorsimulationsuccessverification and validationvoltagewireless
项目摘要
PROJECT SUMMARY
The objective of this Phase I SBIR is to develop a spinal fusion implant with embedded biomechanically
powered sensor. Evoke Medical’s core technology is to create human-powered implantable devices that utilize
piezoelectric materials to generate load-induced power. That power can then be used for various purposes:
electrical stimulation of bone growth and/or load-sensing to track fusion progression. Through our current Phase
II project, a fully integrated piezoelectric transforaminal lumbar interbody fusion (TLIF) implant was developed
with embedded power generator and miniaturized circuitry for signal conditioning. In this TLIF implant, lower
impedance piezoelectric materials were used to generate power for mechanically synced direct current (DC)
electrical stimulation delivered to an electrode on the implant surface for the purposes of enhancing bone growth.
No batteries are used in any Evoke Medical implant as all energy is biomechanically induced by human motion.
Our preliminary work has also shown that a piezoelectric interbody implant can act as a sensor and distinguish
between different applied physiological loads that correlate to fusion progression.
In other industries, piezoelectric materials are often used as load sensors. In situ, mechanical loads applied to
the piezoelectric device generate proportional electrical voltages that can be translated back to quantify the
applied load on the device. Evoke Medical will use this inherent ability of piezoelectric materials to characterize
the change in load environment within the disc space, and subsequently provide objective data to the clinician
and patient to inform post-operative outcomes and treatment decisions. In spinal fusion, the load on the implant
is highest when the device is first implanted and there is no bony fusion mass around and throughout the implant.
As fusion progresses, the load on the implant is reduced according to the fusion grade achieved due to the
increased surface area and stiffness of the growing bone structure. In this proposal, we will prove that a
custom piezogenerator embedded in a spinal fusion implant with the associated circuit hardware and
data acquisition software can collect, store, and wirelessly transmit changes in load within the interbody
space. These changes can then be related back to fusion progression and other post-operative outcomes.
Evoke Medical has already developed cost-effective manufacturing methods and demonstration of safety and
efficacy of the stimulating aspect of the piezoelectric TLIF that is moving forward in the commercialization
process through a DeNovo regulatory strategy. In these verification tests, we have also proven that we can
successfully harvest patient motion and convert that to usable power under physiological loading conditions. By
developing the load sensing aspect of the TLIF implant now, Evoke Medical will be able to jumpstart our
capabilities to provide patients with biofeedback on how their implant is helping them. It will give surgeons the
ability to quantify healing progress without the multitude of expensive CT scans or potentially biased patient
reported outcome measures. This will allow the physician to make informed postoperative treatment decisions
that could greatly improve the chances of fusion success. Commercialization of this remote load sensing data
tool for spinal fusion patient care is disruptive, will help to reduce healthcare costs, and simultaneously enhance
patient care, particularly in rural or remote areas or in times of limited access to healthcare providers (e.g. during
COVID-19).
In this Phase 1 project, we will first establish that utilizing a textured piezogenerator embedded in a TLIF implant
will power the necessary components in a prototype load sensing circuit. The functionality of integrating the
developed sensor circuit with a data acquisition framework will be verified through a large range of applied
physiologic load conditions. Proving that the Evoke piezoelectric TLIF can accurately sense and output
physiologic load data, differentiating between varying loads expected in fusion progression, will de-risk the
integration of sensing and bone stimulating capabilities.
The results of this work will set the stage for Phase II funding to integrate and miniaturize the sensing and
stimulating circuits to create an integrated, dual mode stimulating and sensing spinal fusion implant. As part of
this phase II work, additional in vivo validation ovine studies will be completed to justify moving forward with
commercialization. Following, additional funding will be raised to complete the necessary verification & validation
testing along with early clinical trials required for expanded regulatory claims around addition of the sensing
capability of the TLIF implant. The thoracolumbar spine interbody market is over $1.4B/year with a compound
annual growth rate of 2.9%. The proposed device is hypothesized to increase success of healing and decrease
time to heal, as well as give patients and healthcare providers quantitative outcome measures without expensive
CT scans or biased patient self-reporting. This would decrease overall cost of care and human suffering, as
earlier, data driven post-operative decisions could be made, preventing a failed fusion and additional revision
surgeries.
项目总结
这一阶段的SBIR的目标是开发一种嵌入生物力学的脊柱融合植入物
供电的传感器。Evoke Medical的核心技术是创造人类动力的可植入设备,利用
用压电材料产生负载感应功率。然后,这种力量可以用于各种目的:
电刺激骨生长和/或负荷感应以跟踪融合进程。通过我们当前的阶段
项目二,研制了一种全集成型的压电式经孔腰椎间融合术植入物。
内置功率发生器和微型信号调理电路。在这个TLIF植入物中,
利用阻抗压电材料为机械同步直流(DC)发电
电刺激在植入物表面的电极上提供的电刺激,以促进骨骼生长。
任何Evoke Medical植入物都不使用电池,因为所有能量都是由人体运动通过生物力学产生的。
我们的初步工作还表明,压电式椎体间植入物可以作为传感器并区分
在与融合进程相关的不同应用生理负荷之间。
在其他工业中,压电材料经常被用作负载传感器。就地施加机械载荷到
该压电装置产生比例电压,可转换回量化
在设备上施加了负载。Evoke Medical将利用这种固有的压电材料能力来表征
盘空间内负载环境的变化,并随后向临床医生提供客观数据
和病人告知术后结果和治疗决定。在脊柱融合中,植入物上的负荷
当设备第一次植入时,骨融合率最高,植入物周围和整个植入物周围没有骨融合块。
随着融合的进行,植入物上的负荷根据达到的融合等级而减少,这是由于
增加生长中的骨骼结构的表面积和硬度。在这份提案中,我们将证明
嵌入脊柱融合植入物中的定制压电式发电机以及相关的电路硬件和
数据采集软件可以收集、存储和无线传输椎间载荷的变化
太空。这些变化可以追溯到融合进程和其他手术后的结果。
Evoke Medical已经开发出具有成本效益的制造方法,并展示了安全和
正向商业化发展的压电型TLIF的激励效应
通过DeNovo监管战略进行处理。在这些验证测试中,我们也证明了我们可以
成功地获取患者的运动,并在生理负荷条件下将其转换为可用功率。通过
现在开发TLIF植入物的负载传感方面,Evoke Medical将能够启动我们的
能够为患者提供关于他们的植入物如何帮助他们的生物反馈。它将为外科医生提供
能够量化愈合进度,而无需大量昂贵的CT扫描或潜在的偏见患者
报告的结果衡量标准。这将使医生能够做出知情的术后治疗决定。
这可以极大地提高核聚变成功的机会。这种远程负荷传感数据的商业化
脊柱融合患者护理工具具有颠覆性,将有助于降低医疗成本,同时增强
病人护理,特别是在农村或偏远地区,或在医疗保健提供者有限的时候(例如在
新冠肺炎)。
在这个第一阶段的项目中,我们将首先建立利用嵌入TLIF植入物中的纹理压电式发电机
将为原型负载感应电路中的必要组件供电。集成的功能
所开发的传感器电路与数据采集框架将通过大范围的应用验证
生理负荷条件。证明了EVOKE压电式TLIF能够准确地检测和输出
生理负荷数据,区分融合进程中预期的不同负荷,将降低
集成了传感和骨骼刺激功能。
这项工作的结果将为第二阶段资金整合和微型化传感器和
刺激电路,创造一种集成的、双模式刺激和传感的脊柱融合植入物。作为以下内容的一部分
这项第二阶段的工作,将完成更多的活体验证绵羊研究,以证明继续进行
商业化。随后,将筹集额外资金,以完成必要的验证和确认
测试与早期临床试验一起进行,以扩大围绕传感的监管声明
TLIF植入物的能力。使用复合体的胸腰椎椎体间市场每年超过14亿美元
年增长率为2.9%。提出的装置被认为是为了增加治愈的成功率和减少
治愈时间,以及在不昂贵的情况下为患者和医疗保健提供者提供量化结果衡量标准
CT扫描或有偏见的病人自我报告。这将减少护理和人类痛苦的总成本,因为
早期,可以做出数据驱动的术后决定,防止失败的融合和额外的翻修
手术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leighton LaPierre其他文献
Leighton LaPierre的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leighton LaPierre', 18)}}的其他基金
Development of an Osteoinductive Spinal Fusion Implant for Enhanced Fusion Rates
开发骨诱导脊柱融合植入物以提高融合率
- 批准号:
9753124 - 财政年份:2016
- 资助金额:
$ 27.49万 - 项目类别:
相似国自然基金
基于Teach-back药学科普模式的慢阻肺患者吸入用药依从性及疗效研究
- 批准号:2024KP61
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Quench-Back保护的超导螺线管磁体失超过程数值模拟研究
- 批准号:51307073
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Relationships Between Pain-Related Psychological Factors, Gait Quality, and Attention in Chronic Low Back Pain
慢性腰痛中疼痛相关心理因素、步态质量和注意力之间的关系
- 批准号:
10679189 - 财政年份:2023
- 资助金额:
$ 27.49万 - 项目类别:
The Role of VEGF in the Development of Low Back Pain Following IVD Injury
VEGF 在 IVD 损伤后腰痛发展中的作用
- 批准号:
10668079 - 财政年份:2023
- 资助金额:
$ 27.49万 - 项目类别:
Psilocybin and Affective Function in Chronic Lower Back Pain and Depression
裸盖菇素与慢性腰痛和抑郁症的情感功能
- 批准号:
10626449 - 财政年份:2023
- 资助金额:
$ 27.49万 - 项目类别:
Brain Mechanisms of Chronic Low-Back Pain: Specificity and Effects of Aging and Sex
慢性腰痛的脑机制:衰老和性别的特异性和影响
- 批准号:
10657958 - 财政年份:2023
- 资助金额:
$ 27.49万 - 项目类别:
Guidelines for the management of acute low back pain
急性腰痛治疗指南
- 批准号:
10906608 - 财政年份:2023
- 资助金额:
$ 27.49万 - 项目类别:
Development and performance of a model combining a polygenic risk score and biopsychosocial measures to predict the transition of acute to chronic low back pain
结合多基因风险评分和生物心理社会测量的模型的开发和性能,以预测急性腰痛向慢性腰痛的转变
- 批准号:
478821 - 财政年份:2023
- 资助金额:
$ 27.49万 - 项目类别:
Operating Grants
Racial and Socioeconomic Differences in Chronic Low Back Pain
慢性腰痛的种族和社会经济差异
- 批准号:
10656046 - 财政年份:2023
- 资助金额:
$ 27.49万 - 项目类别:
Improving Function and Reducing Opioid Use for Patients with Chronic Low Back Pain in Rural Communities through Improved Access to Physical Therapy using Telerehabilitation
通过远程康复改善物理治疗的可及性,改善农村社区慢性腰痛患者的功能并减少阿片类药物的使用
- 批准号:
10745146 - 财政年份:2023
- 资助金额:
$ 27.49万 - 项目类别:
Elucidation of the mechanism of low back pain as a symptom of menstruation and development of coping methods
阐明作为月经症状的腰痛的机制并开发应对方法
- 批准号:
23H03216 - 财政年份:2023
- 资助金额:
$ 27.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Open science practices for low back pain research: Identifying opportunities and setting priorities
腰痛研究的开放科学实践:识别机会并设定优先事项
- 批准号:
480800 - 财政年份:2023
- 资助金额:
$ 27.49万 - 项目类别:
Miscellaneous Programs














{{item.name}}会员




