Characterizing patients at risk for sepsis through Big Data (Supplement)
通过大数据描述有败血症风险的患者(补充)
基本信息
- 批准号:10599662
- 负责人:
- 金额:$ 21.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdvocateAlgorithmsArtificial IntelligenceBig DataBlack AmericanCommunitiesComputer softwareComputerized Medical RecordDataData ScientistDecision MakingDemographic FactorsDetectionDisadvantagedDiseaseEthicistsEthicsExposure toFocus GroupsFutureGoalsGroupingHealthcareHourImmigrant communityJusticeLabelLinkMentored Patient-Oriented Research Career Development AwardModelingOutputParentsPatientsPersonsProcessRiskSepsisSocietiesSon of Sevenless ProteinsStatistical BiasSystemTechniquesTestingTrainingWorkbasedesigndetection platformexperiencehealth equityhigh riskimprovedinterestintersectionalitymultidisciplinarynovelpredictive modelingpredictive toolssocial biastool
项目摘要
“Ethics and Equity in Developing Artificial Intelligence models for Patients at Risk of Sepsis”
SUMMARY
The goal of this K23 supplement application proposal is to create ethical, disease-specific statistical bias
detection for prediction models. The proposal introduces the first two steps of such as system: convene a
ethics-driven focus group to identify important demographic factors for which to consider correcting, when
applicable; and (2) create a novel bias detection metric, “Selection and Information Bias Exposure and Rank”
or SIBER, which details the involvement and relative importance of each demographic factor (selected by the
focus group) to the prediction output of existing models. In the first part of the workflow, a multidisciplinary
group of ethicists, data scientists, clinicians, and community-based healthcare advocates are asked to attend
three 2-hour sessions focused on improving health equity in the disease of interest (e.g., sepsis). At the end of
the three sessions, the group is expected to have identified the demographic groupings needed for the
algorithmic component. The data from the focus groups will be analyzed using qualitative analytic techniques.
Among the results will be the list of demographic groups/labels that are at risk for experiencing healthcare bias.
A utility function of each demographic variable will be created to weigh their relative importance in prediction
output, but only among those who are deemed at high risk of bias. (The process for determining bias is beyond
the scope of this proposal, but will be in future work.) The bias detection system (SIBER) will be exposed to
two different sepsis prediction models, one of which being the model deliverable for aim 1 of my K23. The
models will determine sepsis risk on unseen data. The proposal will test the ability of SIBER to identify and
rank the different demographic factors contributing to wide prediction intervals.
This supplement builds upon the ongoing work of aim 1 in the parent K23 award, which is to derive
and validate SOS using electronic medical record data. Sepsis is the test case to prove the utility of
SIBER, but the work proposed in this supplement is critical to creating equitable predictive models in general. It
demonstrates that selection and information bias is present in the electronic medical record, and attempts to
link it with certain demographic factors. It is the first step in operationalizing healthcare justice using data. It
also demonstrates the intersectionality that exists between many demographic factors.
“为脓毒症风险患者开发人工智能模型的道德和公平性”
概括
此 K23 补充剂申请提案的目标是创造道德、特定疾病的统计偏差
预测模型的检测。该提案介绍了该系统的前两个步骤:召集一个
道德驱动的焦点小组,以确定需要考虑纠正的重要人口统计因素
适用的; (2) 创建一种新颖的偏差检测指标“选择和信息偏差暴露和排名”
或 SIBER,详细介绍了每个人口统计因素的参与度和相对重要性(由
焦点小组)到现有模型的预测输出。在工作流程的第一部分,多学科
要求伦理学家、数据科学家、临床医生和社区医疗保健倡导者参加
三个 2 小时的会议重点关注改善相关疾病(例如脓毒症)的健康公平性。结束时
在这三届会议上,预计该小组将确定实施该计划所需的人口分组
算法组件。来自焦点小组的数据将使用定性分析技术进行分析。
结果将包括有可能遭受医疗保健偏见风险的人口群体/标签列表。
将创建每个人口统计变量的效用函数,以权衡它们在预测中的相对重要性
输出,但仅限于那些被认为存在高偏见风险的人。 (确定偏差的过程超出了
该提案的范围,但将在未来的工作中。)偏差检测系统(SIBER)将暴露于
两种不同的脓毒症预测模型,其中之一是我的 K23 目标 1 的可交付模型。这
模型将根据未见的数据确定脓毒症风险。该提案将测试 SIBER 识别和
对影响宽预测区间的不同人口统计因素进行排序。
本补充建立在母 K23 奖项中目标 1 正在进行的工作的基础上,该目标旨在得出
并使用电子病历数据验证 SOS。脓毒症是证明效用的测试案例
SIBER,但本补充中提出的工作对于创建一般的公平预测模型至关重要。它
证明电子病历中存在选择和信息偏差,并试图
将其与某些人口因素联系起来。这是利用数据实施医疗保健正义的第一步。它
还证明了许多人口因素之间存在的交叉性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andre L Holder其他文献
Andre L Holder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andre L Holder', 18)}}的其他基金
Characterizing patients at risk for sepsis through Big Data
通过大数据描述有败血症风险的患者
- 批准号:
10668998 - 财政年份:2020
- 资助金额:
$ 21.59万 - 项目类别:
Characterizing patients at risk for sepsis through Big Data
通过大数据描述有败血症风险的患者
- 批准号:
10454830 - 财政年份:2020
- 资助金额:
$ 21.59万 - 项目类别:
Characterizing patients at risk for sepsis through Big Data
通过大数据描述有败血症风险的患者
- 批准号:
10213098 - 财政年份:2020
- 资助金额:
$ 21.59万 - 项目类别:
相似海外基金
CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
- 批准号:
2236926 - 财政年份:2023
- 资助金额:
$ 21.59万 - 项目类别:
Continuing Grant
Artificial intelligence algorithms to predict risk of injury in racehorses.
预测赛马受伤风险的人工智能算法。
- 批准号:
LP210200798 - 财政年份:2023
- 资助金额:
$ 21.59万 - 项目类别:
Linkage Projects
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
- 批准号:
2765246 - 财政年份:2022
- 资助金额:
$ 21.59万 - 项目类别:
Studentship
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 21.59万 - 项目类别:
Standard Grant
The 'risk of risk': remodelling artificial intelligence algorithms for predicting child abuse.
“风险中的风险”:重塑人工智能算法以预测虐待儿童行为。
- 批准号:
ES/R00983X/2 - 财政年份:2022
- 资助金额:
$ 21.59万 - 项目类别:
Research Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 21.59万 - 项目类别:
Standard Grant
Developing a platform for deep phenotyping of heart failure with preserved ejection fraction using raw, widely-available, multi-modality data and artificial intelligence algorithms
使用原始、广泛可用的多模态数据和人工智能算法,开发一个对射血分数保留的心力衰竭进行深度表型分析的平台
- 批准号:
10683803 - 财政年份:2022
- 资助金额:
$ 21.59万 - 项目类别:
Early-assymptomatic-dementia prediction based on a white-matter biomarker using Artificial Intelligence algorithms
使用人工智能算法基于白质生物标志物的早期无症状痴呆症预测
- 批准号:
460558 - 财政年份:2022
- 资助金额:
$ 21.59万 - 项目类别:
Concluding 50 Years of Research in Wireless Communications: Algorithms for Artificial Intelligence and Optimization in Networks Beyond 5G and Thereafter
总结无线通信 50 年的研究:5G 及以后网络中的人工智能和优化算法
- 批准号:
RGPIN-2022-04417 - 财政年份:2022
- 资助金额:
$ 21.59万 - 项目类别:
Discovery Grants Program - Individual
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
- 批准号:
10544772 - 财政年份:2022
- 资助金额:
$ 21.59万 - 项目类别: