Mathematical Modeling Core
数学建模核心
基本信息
- 批准号:10599359
- 负责人:
- 金额:$ 34.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdverse drug effectAffectAftercareBioinformaticsBiological AssayBloodCD4 Positive T LymphocytesCD8-Positive T-LymphocytesCellsCollaborationsDNADataData AnalysesData SetDevelopmentDropsEventExperimental DesignsFosteringGenerationsGoalsHIVHIV InfectionsHIV-1Immune responseImmune systemIndividualInfectionInfection ControlKineticsLaboratoriesLengthMeasuresMissionModelingMutationNatural Killer CellsPersonsPhasePlasmaPopulationProcessPropertyProvirusesPublic HealthResearchResearch Project GrantsResearch SupportRestSIVSamplingShapesSystemT-Cell DepletionTechniquesTestingTimeTissuesViralViremiaVirusantiretroviral therapycomputing resourcesdata integrationdynamic systemexperimental analysisinnovationinsightlatent HIV reservoirmathematical modelmembernonhuman primatenovelpredictive modelingprogramsresponsesimulationsynergismviral rebound
项目摘要
Summary – Mathematical Modeling Core
HIV infection remains an important public health problem. Effective antiretroviral therapy (ART) can
control the infection, but lifelong ART is challenging and is encumbered by long-term adverse drug
effects. The major challenge to eradicating HIV-1 is the existence of the long-lived latent HIV-1 resevoir.
While reservoir eradication is the ultimate goal, to achieve that goal we need greater understanding of
the factors underlying the establishment of the reservoir, the composition of the reservoir, the dynamics
of the reservoir and if there are specific properties of reservoir cells that could be exploited to enhance
their elimination. Following the initiation of ART, the amount of virus in the blood drops dramatically.
This is due to the fact that most infected cells die very quickly, and when new infection events are
blocked by ART, this decay becomes apparent. However, not all of the infected cells die; some survive
and may become part of the stable latent reservoir. This research program will study these decay
processes using precise quantitative assays and single cell techniques in hope of understanding
whether the decay represents a selection process that shapes the composition of the latent reservoir.
The Modeling Core will develop mathematical models to explain these decay processes and how they
are related to the dynamics of the latent reservoir. The Core will also provide expertise in experimental
design and analysis of experimental results. We hope that this collaborative, quantitative approach will
lead to a better understanding of how the reservoir forms and persists and to novel cure strategies.
摘要-数学建模核心
艾滋病毒感染仍然是一个重要的公共卫生问题。有效的抗逆转录病毒疗法(ART)可以
控制感染,但终身的艺术是具有挑战性的,并受到长期不良药物的阻碍
效果。根除艾滋病毒-1的主要挑战是存在长期潜伏的艾滋病毒-1来源。
虽然根除水库是最终目标,但为了实现这一目标,我们需要更多地了解
储集层形成的因素、储集层的组成、动力
以及是否有可以利用的储集层细胞的特定属性来提高
他们被淘汰了。在开始抗逆转录病毒治疗后,血液中的病毒数量急剧下降。
这是因为大多数受感染的细胞很快就会死亡,当新的感染事件发生时
在艺术的阻挡下,这种腐朽变得显而易见。然而,并不是所有受感染的细胞都会死亡;有些细胞会存活下来。
并可能成为稳定潜藏的一部分。这项研究计划将研究这些衰变
使用精确的定量分析和单细胞技术的过程,希望了解
衰变是否代表了塑造潜在储集层组成的选择过程。
建模核心将开发数学模型来解释这些衰变过程以及它们如何
与潜在储集层的动力学有关。核心还将提供实验方面的专业知识
实验结果的设计与分析。我们希望这种合作的、量化的方法将
从而更好地了解储藏是如何形成和持续的,并提出新的治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALAN S PERELSON其他文献
ALAN S PERELSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALAN S PERELSON', 18)}}的其他基金
Collaborative Integration of HCV Molecular Virology and Mathematical Modeling
HCV 分子病毒学与数学建模的协同整合
- 批准号:
8185168 - 财政年份:2011
- 资助金额:
$ 34.89万 - 项目类别:
Collaborative Integration of HCV Molecular Virology and Mathematical Modeling
HCV 分子病毒学与数学建模的协同整合
- 批准号:
8545364 - 财政年份:2011
- 资助金额:
$ 34.89万 - 项目类别:
Collaborative Integration of HCV Molecular Virology and Mathematical Modeling
HCV 分子病毒学与数学建模的协同整合
- 批准号:
8461898 - 财政年份:2011
- 资助金额:
$ 34.89万 - 项目类别:
Collaborative Integration of HCV Molecular Virology and Mathematical Modeling
HCV 分子病毒学与数学建模的协同整合
- 批准号:
8655137 - 财政年份:2011
- 资助金额:
$ 34.89万 - 项目类别:
Collaborative Integration of HCV Molecular Virology and Mathematical Modeling
HCV 分子病毒学与数学建模的协同整合
- 批准号:
8267592 - 财政年份:2011
- 资助金额:
$ 34.89万 - 项目类别: