Improved optimization of covalent ligands using a novel implementation of quantum mechanics suitable for large ligand/protein systems.
使用适用于大型配体/蛋白质系统的量子力学的新颖实现改进了共价配体的优化。
基本信息
- 批准号:10601968
- 负责人:
- 金额:$ 14.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-13 至 2024-03-12
- 项目状态:已结题
- 来源:
- 关键词:AddressAspirinBindingBinding SitesClinical TrialsComplexComputing MethodologiesCovalent InteractionDataDockingDrug TargetingEnvironmentEquationExplosionFDA approvedFamilyFormulationFree EnergyGeometryGoalsHalogensHourLeadLegal patentLigand BindingLigandsMetalsMethodsModelingModernizationMolecularMolecular StructureNaturePenicillinsPharmaceutical PreparationsPharmacologic SubstancePhosphotransferasesProcessProteinsPublishingQuantum MechanicsQuantum TheoryReactionReliability of ResultsRunningSamplingSeriesSpecificityStructureSystemTailTimeTriageValidationWorkcluster computingcomputational chemistrycomputational platformcomputerized toolscostcovalent bonddensitydesigndistributed memorydrug discoveryimprovedinhibitorinnovationinterestmechanical forcemolecular dynamicsmolecular mechanicsnovelnovel strategiesparallelizationpre-clinicalprocess optimizationprogramsprotein degradationprotein protein interactionsmall moleculetheoriestimelinetoolvirtual screening
项目摘要
Project Summary
The value of computational chemistry to commercial drug discovery is now well-established. Virtual screening
(including molecular docking) now jumpstarts most discovery efforts. Tools such as molecular dynamics and
free energy perturbation are increasingly used to inform the later stages of lead refinement. The growing
importance of computational structure-based methods has influenced the types of ligands that are identified.
The energy of a molecular system is fully described by quantum mechanics (QM). However, QM equations are
extraordinarily complex, and applying QM to realistic models of relevance to drug discovery on a suitable
timescale has traditionally been impossible. Instead, a simplified formulation of molecular interaction, molecular
mechanics (MM), has been used. The analytic equations of MM can be easily assessed directly from the
coordinates of a molecular structure. However, MM suffers severe limitations relative to the QM representation,
including poor estimation of certain types of molecular effects (polarization, π-stacking, and interactions with
metals and halogens) and an inability to deal with changes in topology, including bond creation/breakage.
Because of this latter limitation, drug discovery in the computational era has focused largely on non-covalent
inhibitors. However, covalent drugs are historically significant (aspirin, penicillin, more than 50 FDA approved
drugs in total). A growing realization that covalent drugs can provide a way to address problems that non-
covalent ligands cannot address has led to a resurgence in interest in drug covalency. Among the targets that
are especially well suited for covalent drugs are: drugs that differentiate among similar binding sites (e.g., the
Kinase family); Protec drugs that can lead to protein degradation; and ligands that can target “undruggable”
targets such as protein-protein interactions. In turn, this realization has led to renewed interest in QM methods.
We recently described a new, novel implementation of QM that (for the first time) allows accurate DFT/QM to
be applied to large ligand/protein systems with sufficient throughput for drug discovery. This new approach
allows calculations to be carried out in less than an hour on a massively distributed computing platform, as
compared to weeks or months using traditional QM implementations. This makes it possible to use QM-based
computational tools to optimize covalent ligands--including such previously elusive goals as tuning the
“warhead” reactive group on the ligand. Subsequent work we have carried out has further demonstrated the
ability of QM to improve upon standard scoring approaches for covalently-bound ligands. This has led us to
develop an approach that will streamline and optimize the process of computationally-driven covalent ligand
characterization. The result will be a QM approach that can reliably focus ligand optimization—including the
warhead—on a timescale commensurate with modern drug discovery.
项目摘要
计算化学对商业药物发现的价值现在已经确立。虚拟筛选
(包括分子对接)现在启动了大多数发现工作。分子动力学和
自由能微扰越来越多地用于通知铅精炼的后期阶段。日益增长的
基于计算结构的方法的重要性影响了所鉴定的配体的类型。
分子系统的能量完全由量子力学(QM)描述。然而,QM方程是
非常复杂,并将QM应用于与药物发现相关的现实模型,
传统上,时间表是不可能的。相反,分子相互作用的简化公式,
机械(MM),已被使用。MM的解析方程可以很容易地直接从
分子结构的坐标。然而,MM相对于QM表示受到严重的限制,
包括对某些类型的分子效应(极化、π堆积和与
金属和卤素)和不能处理拓扑结构的变化,包括键的产生/断裂。
由于后者的限制,计算时代的药物发现主要集中在非共价键上。
抑制剂的然而,共价药物具有历史意义(阿司匹林、青霉素、超过50种FDA批准的药物)。
药物总量)。越来越多的人认识到,共价药物可以提供一种方法来解决非共价药物的问题。
共价配体不能解决的问题导致了对药物共价性的兴趣的复苏。在这些目标中
特别适合于共价药物的是:在相似结合位点之间区分的药物(例如,的
激酶家族);可导致蛋白质降解的Protec药物;以及可靶向“不可用药”的配体
例如蛋白质-蛋白质相互作用。反过来,这种认识导致了对QM方法的新兴趣。
我们最近描述了一种新的,新颖的QM实现,(第一次)允许精确的DFT/QM,
应用于大的配体/蛋白质系统,具有足够的药物发现通量。这种新方法
允许在大规模分布式计算平台上在不到一个小时的时间内进行计算,
相比之下,使用传统的QM实现需要数周或数月。这使得可以使用基于QM的
计算工具来优化共价配体-包括以前难以实现的目标,如调整
配体上的“弹头”反应基团。我们开展的后续工作进一步证明,
QM改进共价结合配体的标准评分方法的能力。这使我们
开发一种方法,将简化和优化计算驱动的共价配体的过程,
特征化结果将是一种可以可靠地集中于配体优化的QM方法-包括
在与现代药物发现相称的时间尺度上。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David A Pearlman其他文献
David A Pearlman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David A Pearlman', 18)}}的其他基金
Next generation free energy perturbation (FEP) calculations--enabled by a novel integration of quantum mechanics (QM) with molecular dynamics allowing a large QM region and no sampling compromises
下一代自由能微扰 (FEP) 计算——通过量子力学 (QM) 与分子动力学的新颖集成实现,允许较大的 QM 区域且不会影响采样
- 批准号:
10698836 - 财政年份:2023
- 资助金额:
$ 14.86万 - 项目类别:
Absolute binding free energies for virtual screening: A novel implementation of quantum mechanics/molecular mechanics (QM/MM) for FEP that allows substantial sampling and a significant quantum region
用于虚拟筛选的绝对结合自由能:用于 FEP 的量子力学/分子力学 (QM/MM) 的新颖实现,允许大量采样和重要的量子区域
- 批准号:
10759829 - 财政年份:2023
- 资助金额:
$ 14.86万 - 项目类别:
相似国自然基金
Aspirin调控AKT/Foxo3a/BIM通路延缓吡咯替尼耐药作用机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
Aspirin与自噬通路及核转录因子FoxG1在听觉系统退行性变中的协同调控机制研究
- 批准号:81800915
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
Aspirin联合牙周膜干细胞再生全脱位牙牙周组织机制研究
- 批准号:81760190
- 批准年份:2017
- 资助金额:32.0 万元
- 项目类别:地区科学基金项目
可注射温敏型水凝胶缓释Aspirin碳点和EPO促牙周组织再生的研究
- 批准号:81600879
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
Aspirin协同IFN-α抑制肝癌转移复发的作用及机制研究
- 批准号:30972889
- 批准年份:2009
- 资助金额:31.0 万元
- 项目类别:面上项目
胃癌microRNA特异表达与靶基因调控及Aspirin的作用
- 批准号:30873099
- 批准年份:2008
- 资助金额:35.0 万元
- 项目类别:面上项目
相似海外基金
Aspirin, Lp(a) and Primary Prevention of Cardiovascular Events
阿司匹林、Lp(a) 和心血管事件的一级预防
- 批准号:
10720757 - 财政年份:2023
- 资助金额:
$ 14.86万 - 项目类别:
Postpartum low-dose aspirin to augment vascular recovery following a hypertensive disorder of pregnancy
产后小剂量阿司匹林可促进妊娠高血压疾病后的血管恢复
- 批准号:
10644089 - 财政年份:2023
- 资助金额:
$ 14.86万 - 项目类别:
Early Double Low-Dose Aspirin to Reduce Preeclampsia and Miscarriage: a Global Approach RCT
早期双倍低剂量阿司匹林减少先兆子痫和流产:全球方法随机对照试验
- 批准号:
10711793 - 财政年份:2023
- 资助金额:
$ 14.86万 - 项目类别:
Aspirin for Primary Prevention of Cardiovascular Disease in Patients with Elevated Lipoprotein(a)
阿司匹林用于脂蛋白升高患者心血管疾病的一级预防(a)
- 批准号:
10739016 - 财政年份:2023
- 资助金额:
$ 14.86万 - 项目类别:
The PARTUM (Postpartum Aspirin to Reduce Thromboembolism Undue Morbidity) Trial
PARTUM(产后阿司匹林减少血栓栓塞过度发病率)试验
- 批准号:
498295 - 财政年份:2023
- 资助金额:
$ 14.86万 - 项目类别:
Operating Grants
Health Outcomes of Discontinuing Aspirin in Older Adults with Alzheimer's Disease and Related Dementias
患有阿尔茨海默病和相关痴呆症的老年人停用阿司匹林的健康结果
- 批准号:
10662129 - 财政年份:2023
- 资助金额:
$ 14.86万 - 项目类别:
A study on the use of aspirin mini tablets for children with Kawasaki disease for the practical application of mini tablets
阿司匹林迷你片在川崎病患儿中的应用研究
- 批准号:
23K16462 - 财政年份:2023
- 资助金额:
$ 14.86万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Is Aspirin a Cost-Effective Thromboprophylaxis Alternative for Orthopaedic Trauma Patients?
阿司匹林是骨科创伤患者经济有效的血栓预防替代方案吗?
- 批准号:
10784156 - 财政年份:2023
- 资助金额:
$ 14.86万 - 项目类别:
Aspirin and severe maternal morbidity and mortality and adverse pregnancy outcomes
阿司匹林与严重孕产妇发病率和死亡率以及不良妊娠结局
- 批准号:
469014 - 财政年份:2022
- 资助金额:
$ 14.86万 - 项目类别:
Operating Grants
Effects of inflammaging on intestinal epithelial cells and aspirin chemoprevention.
炎症对肠上皮细胞的影响和阿司匹林化学预防。
- 批准号:
10152090 - 财政年份:2021
- 资助金额:
$ 14.86万 - 项目类别: