Improved optimization of covalent ligands using a novel implementation of quantum mechanics suitable for large ligand/protein systems.
使用适用于大型配体/蛋白质系统的量子力学的新颖实现改进了共价配体的优化。
基本信息
- 批准号:10601968
- 负责人:
- 金额:$ 14.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-13 至 2024-03-12
- 项目状态:已结题
- 来源:
- 关键词:AddressAspirinBindingBinding SitesClinical TrialsComplexComputing MethodologiesCovalent InteractionDataDockingDrug TargetingEnvironmentEquationExplosionFDA approvedFamilyFormulationFree EnergyGeometryGoalsHalogensHourLeadLegal patentLigand BindingLigandsMetalsMethodsModelingModernizationMolecularMolecular StructureNaturePenicillinsPharmaceutical PreparationsPharmacologic SubstancePhosphotransferasesProcessProteinsPublishingQuantum MechanicsQuantum TheoryReactionReliability of ResultsRunningSamplingSeriesSpecificityStructureSystemTailTimeTriageValidationWorkcluster computingcomputational chemistrycomputational platformcomputerized toolscostcovalent bonddensitydesigndistributed memorydrug discoveryimprovedinhibitorinnovationinterestmechanical forcemolecular dynamicsmolecular mechanicsnovelnovel strategiesparallelizationpre-clinicalprocess optimizationprogramsprotein degradationprotein protein interactionsmall moleculetheoriestimelinetoolvirtual screening
项目摘要
Project Summary
The value of computational chemistry to commercial drug discovery is now well-established. Virtual screening
(including molecular docking) now jumpstarts most discovery efforts. Tools such as molecular dynamics and
free energy perturbation are increasingly used to inform the later stages of lead refinement. The growing
importance of computational structure-based methods has influenced the types of ligands that are identified.
The energy of a molecular system is fully described by quantum mechanics (QM). However, QM equations are
extraordinarily complex, and applying QM to realistic models of relevance to drug discovery on a suitable
timescale has traditionally been impossible. Instead, a simplified formulation of molecular interaction, molecular
mechanics (MM), has been used. The analytic equations of MM can be easily assessed directly from the
coordinates of a molecular structure. However, MM suffers severe limitations relative to the QM representation,
including poor estimation of certain types of molecular effects (polarization, π-stacking, and interactions with
metals and halogens) and an inability to deal with changes in topology, including bond creation/breakage.
Because of this latter limitation, drug discovery in the computational era has focused largely on non-covalent
inhibitors. However, covalent drugs are historically significant (aspirin, penicillin, more than 50 FDA approved
drugs in total). A growing realization that covalent drugs can provide a way to address problems that non-
covalent ligands cannot address has led to a resurgence in interest in drug covalency. Among the targets that
are especially well suited for covalent drugs are: drugs that differentiate among similar binding sites (e.g., the
Kinase family); Protec drugs that can lead to protein degradation; and ligands that can target “undruggable”
targets such as protein-protein interactions. In turn, this realization has led to renewed interest in QM methods.
We recently described a new, novel implementation of QM that (for the first time) allows accurate DFT/QM to
be applied to large ligand/protein systems with sufficient throughput for drug discovery. This new approach
allows calculations to be carried out in less than an hour on a massively distributed computing platform, as
compared to weeks or months using traditional QM implementations. This makes it possible to use QM-based
computational tools to optimize covalent ligands--including such previously elusive goals as tuning the
“warhead” reactive group on the ligand. Subsequent work we have carried out has further demonstrated the
ability of QM to improve upon standard scoring approaches for covalently-bound ligands. This has led us to
develop an approach that will streamline and optimize the process of computationally-driven covalent ligand
characterization. The result will be a QM approach that can reliably focus ligand optimization—including the
warhead—on a timescale commensurate with modern drug discovery.
项目摘要
现在已经建立了计算化学对商业药物发现的价值。虚拟筛选
(包括分子对接)现在开始大多数发现工作。分子动力和等工具
自由能扰动越来越多地用于告知铅细化的后期阶段。成长
基于计算结构的方法的重要性影响了鉴定的配体类型。
分子系统的能量由量子力学(QM)充分描述。但是,QM方程是
非常复杂,并将QM应用于合适的药物发现的现实模型
传统上,时间尺度是不可能的。相反,简单的分子相互作用公式,分子
力学(MM)已被使用。 MM的分析方程可以很容易地直接从
分子结构的坐标。但是,相对于QM表示,MM遭受严重的限制,
包括对某些类型的分子效应的估计不佳(偏光,π堆积和与
金属和卤素)以及无法处理拓扑变化,包括创造债券/破裂。
由于这种局部限制,计算时代的药物发现主要集中在非共价上
抑制剂。但是,共价药物在历史上很重要(阿司匹林,青霉素,超过50 FDA批准
总共药物)。越来越多的认识到共价药物可以提供一种解决非问题的方法
共价配体无法解决,导致对药物共价的兴趣复兴。在目标中
特别适合共价药物的非常适合:在相似结合位点区分的药物(例如,
激酶家族);可以导致蛋白质降解的蛋白质药物;和可以针对“不可能”的配体
诸如蛋白质蛋白质相互作用之类的靶标。反过来,这种认识导致对QM方法的兴趣重新兴趣。
我们最近描述了一种新的新型QM实现,该实现(首次)允许精确的DFT/QM到达
应用于具有足够吞吐物的大型配体/蛋白质系统。这种新方法
允许在不到一个小时的大规模分布式计算平台上进行计算,因为
与传统QM实施相比,与几周或几个月相比。这使得使用基于QM的
优化共价配体的计算工具 - 包括调整以前难以捉摸的目标
配体上的“弹头”反应群。随后我们进行的工作进一步证明了
QM改进共价结合配体的标准评分方法的能力。这导致了我们
开发一种方法可以简化和优化计算驱动的共价配体的过程
表征。结果将是一种QM方法,可以可靠地集中配体优化 - 包括
弹头 - 与现代药物发现相称的时间表。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David A Pearlman其他文献
David A Pearlman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David A Pearlman', 18)}}的其他基金
Next generation free energy perturbation (FEP) calculations--enabled by a novel integration of quantum mechanics (QM) with molecular dynamics allowing a large QM region and no sampling compromises
下一代自由能微扰 (FEP) 计算——通过量子力学 (QM) 与分子动力学的新颖集成实现,允许较大的 QM 区域且不会影响采样
- 批准号:
10698836 - 财政年份:2023
- 资助金额:
$ 14.86万 - 项目类别:
Absolute binding free energies for virtual screening: A novel implementation of quantum mechanics/molecular mechanics (QM/MM) for FEP that allows substantial sampling and a significant quantum region
用于虚拟筛选的绝对结合自由能:用于 FEP 的量子力学/分子力学 (QM/MM) 的新颖实现,允许大量采样和重要的量子区域
- 批准号:
10759829 - 财政年份:2023
- 资助金额:
$ 14.86万 - 项目类别:
相似国自然基金
阿司匹林丁香酚酯促进高脂血症大鼠胆汁酸代谢的分子机制与潜在靶点挖掘
- 批准号:32373071
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
阿司匹林通过靶向MGLL介导的AKR1C1/铁死亡通路逆转子宫内膜样腺癌孕激素抵抗的机制研究
- 批准号:82373390
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
阿司匹林靶向细粒棘球蚴5-HTR/GLUT轴治疗囊型包虫病的分子机制研究
- 批准号:82273977
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
阿司匹林靶向细粒棘球蚴5-HTR/GLUT轴治疗囊型包虫病的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
阿司匹林通过乙酰化TRAF2干扰TRAF2-TRADD蛋白质互作预防EVT侵袭功能障碍的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanistic Insights into the Plant Disease Resistance Mediated by NPR1
NPR1 介导的植物抗病性的机制见解
- 批准号:
10390811 - 财政年份:2022
- 资助金额:
$ 14.86万 - 项目类别:
Polyunsaturated fatty acids and colorectal tumor risk: a molecular and genetic epidemiology study
多不饱和脂肪酸与结直肠肿瘤风险:分子和遗传流行病学研究
- 批准号:
10304319 - 财政年份:2021
- 资助金额:
$ 14.86万 - 项目类别:
Polyunsaturated fatty acids and colorectal tumor risk: a molecular and genetic epidemiology study
多不饱和脂肪酸与结直肠肿瘤风险:分子和遗传流行病学研究
- 批准号:
10338200 - 财政年份:2021
- 资助金额:
$ 14.86万 - 项目类别:
Polyunsaturated fatty acids and colorectal tumor risk: a molecular and genetic epidemiology study
多不饱和脂肪酸与结直肠肿瘤风险:分子和遗传流行病学研究
- 批准号:
10560524 - 财政年份:2021
- 资助金额:
$ 14.86万 - 项目类别:
A Targeted Approach to Managing Salivary Gland Inflammation Using Resolvins
使用 Resolvins 治疗唾液腺炎症的有针对性的方法
- 批准号:
10386917 - 财政年份:2020
- 资助金额:
$ 14.86万 - 项目类别: