Project 003 - VICI
项目003 - VICI
基本信息
- 批准号:10602745
- 负责人:
- 金额:$ 33.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAutomobile DrivingBiologicalBloodCellsCharacteristicsClassificationClinicalComplexDataData SetDevelopmentDimensionsEnvironmentEnvironmental Risk FactorEpigenetic ProcessFutureGene ExpressionGenerationsGenesGenomeGiftsGoalsHIVHeterogeneityHuman bodyImmuneImmunologicsIntegration Host FactorsKnowledgeLinear ModelsMeasuresMediatingMediationMedicineMethodsModelingMovementNetwork-basedOrganParticipantPathway interactionsPatternPerfusionPersonsPhenotypePopulationPredispositionReproducibilityResearchResearch PersonnelResearch Project GrantsResourcesSatellite VirusesStatistical MethodsStructureSystemTalentsTechnologyTestingTissue SampleTissuesValidationViralViremiaVirionanalytical methodantiretroviral therapybiological systemscohortcomplex datadata integrationdemographicsdiverse datagene regulatory networkhigh dimensionalityinnovationinsightintegration sitemigrationmultidimensional datanetwork modelsnew technologynovelparticipant enrollmentprogramstrait
项目摘要
PROJECT 3. Viral, Immunologic and Cellular data Integration (VICI) Research Project - ABSTRACT
For 40 years, research has advanced HIV medicine to the point where persons with HIV (PWH) can live normal
and healthy lives if they have access to antiretroviral therapy (ART). Nevertheless, HIV cannot be readily cured.
Curing HIV requires further advances in approaches to investigating biological systems at multiple scales, from
interactions among genes within a cell to migration of HIV between tissues. Innovative methods are needed to
characterize HIV dynamics more fully in settings where ART is and is not stopped.
These methods are urgently needed to address the challenges that arise in proof-of-concept studies with a small
number of participants. The VICI Research Project (RP) proposes development and validation of methods for
analyzing large and complex datasets generated by the other RPs (VENI and VIDI) from 20 well-characterize
participants enrolled in the innovative Last Gift cohort. As reproducible scientific results depend as much on
development of novel analytical methods to address the challenges posed by these datasets as on their
generation, we propose to devote considerable resources and talent to the proposed VICI RP.
Throughout this VICI RP, we describe development, statistical validation, and application of models that integrate
high-dimensional, single-cell and single-genome data with clinical and other low-dimensional covariates.
Proposed methods use a ‘systems’ approach that incorporates connections among complex and distinct entities
(e.g., gene expression, integration site, epigenetic marks, tissue types) or elucidates relationships among
predictors to integrate the totality of the data.
Aims 1 and 2 focus on novel statistical methods to (1) combine novel network methods with the discrete trait
analyses (described in the VENI RP) to infer viral migration networks and its predictors, and (2) identify cell
phenotypes based on classes of gene regulatory networks identified through a novel form of recursive
partitioning. These methods will be directly applied to analyze HIV activation and repopulation of tissues.
Aim 3 uses mediation analysis⸺including novel tests for heterogeneity in mediation effects⸺to assess
mechanisms that drive HIV persistence in the body.
These complementary aims share the same overarching goal of providing a system-based framework that
facilitates analysis of large, complex, and high dimensional datasets. To illustrate the study framework and guide
reviewers, we describe the application of the proposed innovative methods on the study-defined reservoir states
of HIV leaving, coming, and staying HOME on and off ART.
项目3.病毒、免疫学和细胞数据集成(VICI)研究项目
40年来,研究人员将艾滋病毒医学发展到了使艾滋病毒携带者(PWH)能够正常生活的地步
如果他们能够获得抗逆转录病毒治疗(ART),他们就会有健康的生活。然而,艾滋病毒并不是很容易治愈的。
治愈艾滋病毒需要在多个尺度上研究生物系统的方法方面取得进一步进展,从
细胞内基因之间的相互作用对艾滋病毒在组织之间的迁移。需要创新的方法来
在ART正在和没有停止的环境中,更全面地描述艾滋病毒的动态。
迫切需要这些方法来解决在概念验证研究中出现的挑战
参与者数量。VICI研究项目(RP)建议开发和验证以下方法
分析其他RPS(Veni和Vidi)从20个特征良好的数据中生成的大型复杂数据集
参与者登记在创新的最后一份礼物队列中。因为可重现的科学结果同样依赖于
开发新的分析方法,以应对这些数据集对其
在这一代,我们建议投入相当多的资源和人才在拟议的维西资源计划上。
在整个VICI RP中,我们描述了模型的开发、统计验证和应用
具有临床和其他低维协变量的高维、单细胞和单基因组数据。
所提出的方法使用一种将复杂和不同实体之间的联系结合在一起的“系统”方法
(例如,基因表达、整合位置、表观遗传标记、组织类型)或阐明
预测者对整个数据进行整合。
目标1和2侧重于新的统计方法,以(1)将新的网络方法与离散特征相结合
分析(在Veni RP中描述)以推断病毒迁移网络及其预测因素,以及(2)识别细胞
通过一种新的递归形式识别的基于基因调控网络类别的表型
分区。这些方法将直接应用于分析艾滋病毒的激活和组织的再繁殖。
AIM 3使用中介分析⸺,包括新的中介效果异质性测试⸺来评估
驱动艾滋病毒在体内持续存在的机制。
这些互补的目标共享相同的总体目标,即提供基于系统的框架,该框架
便于分析大型、复杂和高维数据集。说明研究框架和指南
回顾,我们描述了提出的创新方法在研究定义的储集层状态上的应用
艾滋病病毒的离开、到来和呆在家里的时间和时间。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VICTOR GERARD DEGRUTTOLA其他文献
VICTOR GERARD DEGRUTTOLA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VICTOR GERARD DEGRUTTOLA', 18)}}的其他基金
Methods to Advance the HIV Prevention Research Agenda
推进艾滋病毒预防研究议程的方法
- 批准号:
9188055 - 财政年份:2015
- 资助金额:
$ 33.47万 - 项目类别:
Methods for Long-Term Follow-Up of HIV-Infected Patients
HIV 感染者的长期随访方法
- 批准号:
6622564 - 财政年份:2002
- 资助金额:
$ 33.47万 - 项目类别:
Methods to Advance the HIV Prevention Research Agenda
推进艾滋病毒预防研究议程的方法
- 批准号:
8211677 - 财政年份:2002
- 资助金额:
$ 33.47万 - 项目类别:
Methods for Long-Term Follow-Up of HIV-Infected Patients
HIV 感染者的长期随访方法
- 批准号:
7622479 - 财政年份:2002
- 资助金额:
$ 33.47万 - 项目类别:
Methods for Long-Term Follow-Up of HIV-Infected Patients
HIV 感染者的长期随访方法
- 批准号:
6947623 - 财政年份:2002
- 资助金额:
$ 33.47万 - 项目类别:
Methods for Long-Term Follow-Up of HIV-Infected Patients
HIV 感染者的长期随访方法
- 批准号:
7744052 - 财政年份:2002
- 资助金额:
$ 33.47万 - 项目类别:
Methods for Long-Term Follow-Up of HIV-Infected Patients
HIV 感染者的长期随访方法
- 批准号:
7197314 - 财政年份:2002
- 资助金额:
$ 33.47万 - 项目类别:
Methods for Long-Term Follow-Up of HIV-Infected Patients
HIV 感染者的长期随访方法
- 批准号:
6450475 - 财政年份:2002
- 资助金额:
$ 33.47万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 33.47万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 33.47万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 33.47万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 33.47万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 33.47万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 33.47万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 33.47万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 33.47万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 33.47万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 33.47万 - 项目类别:
Continuing Grant