Contributions of Astrocyte Kir4.1/5.1 Channels to Disordered Breathing in Rett Syndrome

星形胶质细胞 Kir4.1/5.1 通道对 Rett 综合征呼吸障碍的影响

基本信息

  • 批准号:
    10606795
  • 负责人:
  • 金额:
    $ 4.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-06 至 2027-01-05
  • 项目状态:
    未结题

项目摘要

SUMMARY Rett syndrome (RTT) (OMIM #312750) is a severe X-linked neurodevelopmental disorder caused by mutations in the methyl-CpG-binding protein 2 (MECP2). Although RTT patients suffer from many co-morbid phenotypes, wake disordered breathing has a major negative impact quality of life and is associated with high mortality rate. Evidence from mouse models of RTT suggest disordered breathing results in part from a disrupted ability to regulate breathing in response to changes in tissue CO2/H+ (i.e., central chemoreflex). The retrotrapezoid nucleus (RTN) is an important site of chemoreception, neurons and astrocytes in this region sense changes in CO2/H+ to regulate breathing. Previous work identifies heteromeric Kir4.1/5.1 channels as key determinants of RTN astrocyte CO2/H+ chemosensitivity. However, homomeric Kir4.1 and heteromeric Kir4.1/5.1 are differentially CO2/H+ sensitive and regulate divergent astrocyte processes including membrane potential and clearance of neuronally released extracellular K+, and it is not clear which of these mechanisms contributes to RTN chemoreception and disordered breathing in RTT. Previous work from my sponsors group showed that MeCP2 deficient mice have reduced levels of both Kir4.1 and 5.1 channels, diminished astrocytic Kir4.1 mediated currents and dysregulated extracellular K+. Preliminary data also show that global deletion of Kir4.1 from astrocytes blunts the ventilatory response to CO2, while re-expression of Kir4.1 specifically in RTN astrocytes rescued this respiratory phenotype. Based on this, I hypothesize that MeCP2 deficiency results in loss of Kir4.1/5.1 and compromised astrocyte chemoreception that contributes to disordered breathing in RTT. To explore this possibility, I will test the following two Specific Aims: 1) Determine roles of astrocyte Kir4.1 containing channels in RTN chemoreception in vitro; and 2) Identify differential roles of Kir4.1 and Kir5.1 channels in the control of breathing in RTT. Understanding how Kir4.1 and Kir5.1 contribute to RTN chemoreception and disordered breathing may provide mechanistic insight for targeted treatment of disordered breathing in RTT. This work will also provide valuable training opportunities in molecular, cellular and whole- animal approaches that will prepare me for a successful future in science.
摘要 雷特综合征(RTT)(OMIM#312750)是一种由突变引起的严重的X连锁神经发育障碍 在甲基CpG结合蛋白2(MECP2)中。尽管RTT患者患有许多共病表型, 清醒呼吸障碍对生活质量有很大的负面影响,并与高死亡率相关。 来自RTT小鼠模型的证据表明,呼吸紊乱的部分原因是 调节呼吸以应对组织中CO2/H+的变化(即中枢化学反射)。后梯形 核团(RTN)是化学感受的重要部位,神经元和星形胶质细胞在该区域感觉变化 CO2/H+调节呼吸。以前的工作发现异构体Kir4.1/5.1通道是 RTN星形胶质细胞对CO2/H+的化疗敏感性。然而,同聚体Kir4.1和异构体Kir4.1/5.1是 对CO2/H+的不同敏感和调节星形胶质细胞的分化过程,包括膜电位和 清除神经元释放的细胞外K+,目前尚不清楚这些机制中的哪一种参与了 RTT中的RTN化学感受和呼吸障碍。我的赞助商小组之前的工作表明 MeCP2缺陷小鼠的Kir4.1和5.1通道水平均降低,星形胶质细胞Kir4.1表达减弱 介导的电流和细胞外K+的失调。初步数据还显示,Kir4.1在全球范围内缺失 当Kir4.1在RTN中特异性地重新表达时,星形胶质细胞中的Kir4.1表达减弱了对CO2的通气性反应 星形胶质细胞挽救了这种呼吸表型。在此基础上,我假设MeCP2缺乏会导致 Kir4.1/5.1丢失和星形胶质细胞化学接收受损导致呼吸障碍 RTT.为了探索这种可能性,我将测试以下两个具体目标:1)确定星形胶质细胞的角色 KIR4.1在体外RTN化学感受中的作用;2)鉴定Kir4.1和Kir5.1的不同作用 RTT中控制呼吸的通道。了解Kir4.1和Kir5.1如何促进RTN 化学感受和呼吸障碍可能为定向治疗障碍提供机械性洞察力 吸气RTT。这项工作还将在分子、细胞和整体方面提供宝贵的培训机会。 动物方法,这将为我在科学上的成功未来做好准备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Monica Strain其他文献

Monica Strain的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 4.47万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 4.47万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 4.47万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 4.47万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 4.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 4.47万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 4.47万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 4.47万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 4.47万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 4.47万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了