Three dimensionality of the intraglottal flow

声门内血流的三维度

基本信息

  • 批准号:
    10605348
  • 负责人:
  • 金额:
    $ 19.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Voice production is governed by the fluid-structure interaction (FSI) that occurs between the airflow coming from the lungs and the vocal folds, which results in the self-sustained oscillation of the glottis. This vibratory motion is characterized by opening, closing, and closed phases, and the majority of sound is produced during the mid to latter closing. Studies have shown that a faster reduction of glottal flow rate (due to increased closing speed or increased deceleration of the airflow velocity), also known as the maximum flow declination rate (MFDR), determines the acoustic intensity and the amount of energy in the higher harmonics. Higher harmonics are important for intelligibility in noise but not in quiet, a major symptom for patients with voice disorders. The glottis is convergent during opening and divergent during closing. These alternating shapes result in an increase in intraglottal pressure during opening and a decrease (and possibly negative) during closing, which facilitate vibrations. Our long-term goal is to ultimately develop a method that enables detailed intraglottal volumetric flow measurement in a vibrating tissue model of the larynx. This project will advance the method we have developed for measuring intraglottal flow distribution in a single plane toward measuring the intraglottal volume flow distribution in a static physical model of the larynx. The proposed work is based on recent advancements we have made using tomographic particle image velocimetry (tomo-PIV) to capture the dynamics of the volume flow distribution above the glottal exit11. Toward this goal, our specific aim is: 1) Develop a method for measuring intraglottal volume flow distribution. Under this aim, we will first demonstrate the intraglottal flow measurement technique in a static physical model of the larynx. The model's dimensions will be similar to an excised canine larynx and its static geometry will capture the main features of divergent glottis. We expect to see differences in the intraglottal vortices and other glottal jet features between the anterior, posterior, and the mid-membranous aspects of the glottis. We will then validate the intraglottal volume flow measurement technique with auxiliary flow measurements techniques. We expect to show that the intraglottal flow characteristics (e.g., mean velocity, turbulence levels and vortical strength) will match the different measurement techniques within 10%.
发声是由流体结构相互作用(FSI)控制的,该相互作用发生在来自 肺和声带,这导致声门的自我维持振荡。这种振动运动是 其特征在于打开,关闭和关闭阶段,大部分声音产生于中期到中期。 后关闭。研究表明,声门流速的更快降低(由于关闭速度的增加或 气流速度的减速增加),也称为最大流量减速率(MFDR), 决定了高次谐波的声强和能量。高次谐波 对于噪音中的清晰度很重要,但对于安静中的清晰度不重要,安静是语音障碍患者的主要症状。声门 在打开时收敛,在关闭时发散。这些交替的形状导致 在打开期间的声门内压力和在关闭期间的降低(并且可能是负的),这有助于 震动我们的长期目标是最终开发出一种方法,使详细的声门内体积流量 在喉部的振动组织模型中进行测量。这个项目将推进我们已经开发的方法 用于测量单个平面中的声门下流量分布以测量声门下体积流量 分布在喉部的静态物理模型中。拟议的工作是基于最近的进展,我们 已经使用层析粒子图像测速(tomo-PIV)来捕获体积流的动态 声门出口上方的分布11.为了实现这一目标,我们的具体目标是:1)开发一种测量方法, 声门下容积流量分布。在此目标下,我们将首先演示声门下流量测量 技术在一个静态物理模型的喉部。模型的尺寸将类似于一个切除的犬齿 喉部及其静态几何形状将捕获分叉声门的主要特征。我们希望看到的差异, 前、后和中膜之间的声门内涡和其他声门射流特征 声门方面。然后,我们将验证声门下容积流量测量技术, 流量测量技术。我们期望表明声门下血流特征(例如,平均速度, 湍流水平和涡流强度)将在10%内匹配不同的测量技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Farbos de Luzan其他文献

Charles Farbos de Luzan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Farbos de Luzan', 18)}}的其他基金

Three dimensionality of the intraglottal flow
声门内血流的三维度
  • 批准号:
    10438250
  • 财政年份:
    2022
  • 资助金额:
    $ 19.87万
  • 项目类别:

相似海外基金

Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
  • 批准号:
    10078324
  • 财政年份:
    2023
  • 资助金额:
    $ 19.87万
  • 项目类别:
    BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
  • 批准号:
    2308300
  • 财政年份:
    2023
  • 资助金额:
    $ 19.87万
  • 项目类别:
    Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
  • 批准号:
    10033989
  • 财政年份:
    2023
  • 资助金额:
    $ 19.87万
  • 项目类别:
    Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
  • 批准号:
    23K16913
  • 财政年份:
    2023
  • 资助金额:
    $ 19.87万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
  • 批准号:
    10582051
  • 财政年份:
    2023
  • 资助金额:
    $ 19.87万
  • 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
  • 批准号:
    10602958
  • 财政年份:
    2023
  • 资助金额:
    $ 19.87万
  • 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
  • 批准号:
    2889921
  • 财政年份:
    2023
  • 资助金额:
    $ 19.87万
  • 项目类别:
    Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2343847
  • 财政年份:
    2023
  • 资助金额:
    $ 19.87万
  • 项目类别:
    Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
  • 批准号:
    DGECR-2022-00019
  • 财政年份:
    2022
  • 资助金额:
    $ 19.87万
  • 项目类别:
    Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2141275
  • 财政年份:
    2022
  • 资助金额:
    $ 19.87万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了