Identifying symptomatic and neuroprotective strategies for cereballar ataxia
确定小脑共济失调的症状和神经保护策略
基本信息
- 批准号:10605349
- 负责人:
- 金额:$ 50.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-20 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAtaxiaBacterial Artificial ChromosomesBiologyBrainBrain StemCause of DeathCell physiologyCerebellar AtaxiaCerebellumCessation of lifeDataDiseaseElectrophysiology (science)EventFunctional disorderFundingGenesGenetic TranscriptionGenetic studyGlutamineImmunoprecipitationImpairmentInferiorIon ChannelKnock-inKnock-in MouseLY6E geneLinkMJD1 proteinMediatingMembraneModelingMolecularMotorNerve DegenerationNeuronal DysfunctionNeuronsOlives - dietaryPathogenesisPathogenicityPathway interactionsPhysiologyPlayPotassium ChannelProteinsPublicationsPurkinje CellsRNARNA StabilityRoleSeriesSliceSpinocerebellar AtaxiasTranscriptTransgenic MiceTransgenic OrganismsViralWorkautosomechromatin immunoprecipitationimprovedin vivoinsightmotor disordermouse geneticsmouse modelmutantneuron lossneuroprotectionpolyglutamineprematuretargeted treatmenttherapeutic targettranscriptomics
项目摘要
A remarkable feature of the neurodegenerative spinocerebellar ataxias (SCAs) is that glutamine
encoding CAG (polyQ) expansions in a diverse set of genes all cause Purkinje cell (PC) and brainstem neuron
degeneration. This fact suggests that these genetically distinct polyQ SCAs share key upstream pathogenic
events. While PC dysfunction may principally drive motor dysfunction in polyQ SCAs, brainstem dysfunction
more closely correlates with premature death. This proposal explores unifying molecular events causing
neuronal dysfunction and degeneration in ataxia, with a focus on the polyQ SCAs.
In a series of recent publications supported by new data, we identified alterations in potassium (K+)
channels as a key feature in several polyQ SCAs. Importantly, in SCA1 transgenic mice, we previously showed
that restoring K+ channel expression or function rescued membrane hyperexcitability, improved motor
dysfunction and reduced PC degeneration. It is now important to examine the links between K+ channel
dysregulation and altered membrane excitability in cerebellar and brainstem neurons, and the relationship of
these events to motor dysfunction and neurodegeneration in several polyQ SCAs.
In the prior funding period we identified K+ channel dysfunction as the basis of PC spiking abnormalities
in models of the polyQ ataxias SCA1, SCA2, SCA3 and SCA7, which together account for the majority of
SCAs. To explore shared links between neuronal dysfunction and these functionally diverse polyQ disease
proteins, we applied unbiased transcriptomics in models of SCA1, SCA2 and SCA7, and identified a common
theme, beginning early in disease: significant reduction in cerebellar transcripts for key ion channels important
for K+ channel function. Preliminary data also suggest a reduction in K+ channel transcripts in SCA1 medullary
brainstem neurons. The proposal seeks to determine whether altered K+ channel function tied to the biology of
diverse polyQ proteins in regulating the transcription and/or stability of ion channel transcripts is a unifying
mechanism underlying neuronal dysfunction and degeneration in polyQ SCAs through the following aims: Aim
1: Determine whether there is shared potassium channel dysfunction in cerebellar Purkinje cells and brainstem
neurons in SCA1. Aim 2: Determine whether shared Purkinje cell dysfunction is responsible for motor
dysfunction and neurodegeneration in SCA1, SCA2 and SCA7. Aim 3: Define the basis for shared reduction in
ion channel transcripts in SCA1, SCA2 and SCA7. We anticipate that successful completion of these studies
will definitively establish the important role of K+ channel dysfunction in the disease pathogenesis of a wide
variety of polyQ ataxias. Further, these studies will demonstrate that abnormal Purkinje neuron spiking causes
motor dysfunction in SCAs Lastly, the proposed work will also answer whether K+ channels are compelling
therapeutic targets to counter cerebellar and brainstem dysfunction in cerebellar ataxia.
A remarkable feature of the neurodegenerative spinocerebellar ataxias (SCAs) is that glutamine
encoding CAG (polyQ) expansions in a diverse set of genes all cause Purkinje cell (PC) and brainstem neuron
degeneration. This fact suggests that these genetically distinct polyQ SCAs share key upstream pathogenic
events. While PC dysfunction may principally drive motor dysfunction in polyQ SCAs, brainstem dysfunction
more closely correlates with premature death. This proposal explores unifying molecular events causing
neuronal dysfunction and degeneration in ataxia, with a focus on the polyQ SCAs.
In a series of recent publications supported by new data, we identified alterations in potassium (K+)
channels as a key feature in several polyQ SCAs. Importantly, in SCA1 transgenic mice, we previously showed
that restoring K+ channel expression or function rescued membrane hyperexcitability, improved motor
dysfunction and reduced PC degeneration. It is now important to examine the links between K+ channel
dysregulation and altered membrane excitability in cerebellar and brainstem neurons, and the relationship of
these events to motor dysfunction and neurodegeneration in several polyQ SCAs.
In the prior funding period we identified K+ channel dysfunction as the basis of PC spiking abnormalities
in models of the polyQ ataxias SCA1, SCA2, SCA3 and SCA7, which together account for the majority of
SCAs. To explore shared links between neuronal dysfunction and these functionally diverse polyQ disease
proteins, we applied unbiased transcriptomics in models of SCA1, SCA2 and SCA7, and identified a common
theme, beginning early in disease: significant reduction in cerebellar transcripts for key ion channels important
for K+ channel function. Preliminary data also suggest a reduction in K+ channel transcripts in SCA1 medullary
brainstem neurons. The proposal seeks to determine whether altered K+ channel function tied to the biology of
diverse polyQ proteins in regulating the transcription and/or stability of ion channel transcripts is a unifying
mechanism underlying neuronal dysfunction and degeneration in polyQ SCAs through the following aims: Aim
1: Determine whether there is shared potassium channel dysfunction in cerebellar Purkinje cells and brainstem
neurons in SCA1. Aim 2: Determine whether shared Purkinje cell dysfunction is responsible for motor
dysfunction and neurodegeneration in SCA1, SCA2 and SCA7. Aim 3: Define the basis for shared reduction in
ion channel transcripts in SCA1, SCA2 and SCA7. We anticipate that successful completion of these studies
will definitively establish the important role of K+ channel dysfunction in the disease pathogenesis of a wide
variety of polyQ ataxias. Further, these studies will demonstrate that abnormal Purkinje neuron spiking causes
motor dysfunction in SCAs Lastly, the proposed work will also answer whether K+ channels are compelling
therapeutic targets to counter cerebellar and brainstem dysfunction in cerebellar ataxia.
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vikram Govindaraju Shakkottai其他文献
Vikram Govindaraju Shakkottai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vikram Govindaraju Shakkottai', 18)}}的其他基金
Identifying symptomatic and neuroprotective strategies for cereballar ataxia
确定小脑共济失调的症状和神经保护策略
- 批准号:
10394772 - 财政年份:2021
- 资助金额:
$ 50.29万 - 项目类别:
Identifying symptomatic and neuroprotective strategies for cereballar ataxia
确定小脑共济失调的症状和神经保护策略
- 批准号:
10408869 - 财政年份:2021
- 资助金额:
$ 50.29万 - 项目类别:
Identifying symptomatic and neuroprotective strategies for cerebellar ataxia
确定小脑共济失调的症状和神经保护策略
- 批准号:
8875790 - 财政年份:2013
- 资助金额:
$ 50.29万 - 项目类别:
Identifying symptomatic and neuroprotective strategies for cerebellar ataxia
确定小脑共济失调的症状和神经保护策略
- 批准号:
9913591 - 财政年份:2013
- 资助金额:
$ 50.29万 - 项目类别:
Identifying symptomatic and neuroprotective strategies for cerebellar ataxia
确定小脑共济失调的症状和神经保护策略
- 批准号:
9276147 - 财政年份:2013
- 资助金额:
$ 50.29万 - 项目类别:
Identifying symptomatic and neuroprotective strategies for cerebellar ataxia
确定小脑共济失调的症状和神经保护策略
- 批准号:
8610842 - 财政年份:2013
- 资助金额:
$ 50.29万 - 项目类别:
Identifying symptomatic and neuroprotective strategies for cerebellar ataxia
确定小脑共济失调的症状和神经保护策略
- 批准号:
8739327 - 财政年份:2013
- 资助金额:
$ 50.29万 - 项目类别:
Targeting physiologic changes as a route towards therapy for degenerative ataxias
针对生理变化作为退行性共济失调的治疗途径
- 批准号:
8541898 - 财政年份:2010
- 资助金额:
$ 50.29万 - 项目类别:
Targeting physiologic changes as a route towards therapy for degenerative ataxias
针对生理变化作为退行性共济失调的治疗途径
- 批准号:
8026977 - 财政年份:2010
- 资助金额:
$ 50.29万 - 项目类别:
Targeting physiologic changes as a route towards therapy for degenerative ataxias
针对生理变化作为退行性共济失调的治疗途径
- 批准号:
8306263 - 财政年份:2010
- 资助金额:
$ 50.29万 - 项目类别:
相似海外基金
How exercise improves ataxia in SCA6
运动如何改善 SCA6 的共济失调
- 批准号:
479005 - 财政年份:2023
- 资助金额:
$ 50.29万 - 项目类别:
Operating Grants
Exploratoin of Nrf2 activators that potentiate chaperone-mediated autophagy and are useful for the treatment of spinocrebellar ataxia
探索增强伴侣介导的自噬并可用于治疗脊髓小脑共济失调的 Nrf2 激活剂
- 批准号:
23K06161 - 财政年份:2023
- 资助金额:
$ 50.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Defining the role of Tox3 in congenital cerebellar hypoplasia and ataxia
定义 Tox3 在先天性小脑发育不全和共济失调中的作用
- 批准号:
10799992 - 财政年份:2023
- 资助金额:
$ 50.29万 - 项目类别:
Genome-wide dysregulation of R-loops in Ataxia Telangiectasia neurological pathogenesis
共济失调毛细血管扩张症神经发病机制中 R 环的全基因组失调
- 批准号:
10607414 - 财政年份:2023
- 资助金额:
$ 50.29万 - 项目类别:
Identifying the molecular mechanisms of GEMIN5 mutations in a novel cerebellar ataxia syndrome
鉴定新型小脑共济失调综合征中 GEMIN5 突变的分子机制
- 批准号:
10753403 - 财政年份:2023
- 资助金额:
$ 50.29万 - 项目类别:
Project 2: Therapeutic Gene Editing for Friedreich's Ataxia
项目 2:弗里德赖希共济失调的治疗性基因编辑
- 批准号:
10668768 - 财政年份:2023
- 资助金额:
$ 50.29万 - 项目类别:
Molecular Pathogenesis of spinocerebellar ataxia type 12
12 型脊髓小脑共济失调的分子发病机制
- 批准号:
10579736 - 财政年份:2023
- 资助金额:
$ 50.29万 - 项目类别:
The Impact of Vitamin D on mTOR Signaling, Seizures, and Motor Behavior in a Mouse Model of Hyperactive mTOR Induced Epilepsy and Ataxia
维生素 D 对 mTOR 过度活跃诱发癫痫和共济失调小鼠模型中 mTOR 信号传导、癫痫发作和运动行为的影响
- 批准号:
10754319 - 财政年份:2023
- 资助金额:
$ 50.29万 - 项目类别:
Pathological Mechanisms of Immune-Mediated Cerebellar Ataxia with Associated Sez6L2 Autoantibodies
免疫介导的小脑共济失调与相关 Sez6L2 自身抗体的病理机制
- 批准号:
10740682 - 财政年份:2023
- 资助金额:
$ 50.29万 - 项目类别: