Continuously Variable Protein Delivery Using a Photoactivated Depot

使用光激活库进行连续可变的蛋白质递送

基本信息

  • 批准号:
    10606514
  • 负责人:
  • 金额:
    $ 38.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Project Summary The administration of drugs like insulin requires continuously variable delivery. This is because blood glucose is itself continuously varying, and the insulin requirement parallels the amount of glucose in the blood. The only clinically used method to permit continuously variable deliver of therapeutic proteins like insulin is a pump. Pumps can vary therapeutic delivery but they do so at a high cost: a physical connection of the outside of the patient, where the drug reservoir resides, and the inside of the patient, where drug absorption will ultimately take place. This connection in the case of insulin pumps is a cannula or needle, which can be dislodged, crimped, snagged, infected and most importantly, rapidly gets biofouled after implantation. This leads to variable and unpredictable delivery. Instead, we are developing the Photoactivated Depot or PAD approach and applying it to insulin use. With the PAD approach, an insulin containing material is injected into the skin, just like regular insulin, but remains there inactive until a light source that is outside the body stimulates the injected material through the skin with light to release insulin. Our first generation PAD designs linked insulin to a polymer via a light-cleaved linker. When a pulse of light from an LED illuminates this material, insulin is released, and the amount released is proportional to the amount of light. We have demonstrated that these materials work in diabetic animals to release insulin and reduce blood glucose. Despite this success, these first generation materials have performance that makes them untenable for human use. Specifically, the linked polymer that is used to insure that insulin stays at the site of injection makes up >90% of the material, meaning that the total insulin present is less than what is needed for human efficacy. In addition, the low density of insulin means that the rate of photo-cleavage is also insufficient. Because of this, we are proposing multiple approaches to address these issues. In Specific Aim 1 we are creating multiple new PAD materials that eliminate the polymer required in our first generation materials, and in so doing create much higher density materials that are 90% insulin. In Specific Aim 2 we are incorporating new light-cleaved linkers that will release insulin using higher wavelengths of light. This will increase the amount of light that reaches the depot, and hence the ease of insulin release, because longer wavelengths of light penetrate tissues more easily. Finally, in Specific Aim 3 we are closely examining these new materials for their ability to control blood glucose in diabetic animals. By executing these three aims, we anticipate creating a new and revolutionary approach to continuously variable protein delivery, one that minimizes invasiveness, and maximizes the close matching of therapeutic with patient requirements.     Relevance    The  successful  completion  of  the  proposed  work  will  create  a  new  method  to  administer  insulin  that  effectively  eliminates  most  of  the  injections  normally  required  or  the  need  of  a  pump  and  reduces  variations in blood sugar.  This has the potential to improve both the quality of life and the quality of  health of diabetics who depend on insulin to live.
项目概要 胰岛素等药物的给药需要连续可变的输送。这是因为 血糖本身是不断变化的,胰岛素的需求量与胰岛素的量平行 血液中的葡萄糖。临床上唯一使用的允许连续可变输送的方法 胰岛素等治疗性蛋白质是一个泵。泵可以改变治疗输送,但它们的速度是不同的 高成本:药物储存器所在的患者外部的物理连接,以及 患者体内,药物最终发生吸收的地方。此连接在 胰岛素泵的外壳是插管或针头,它们可能会移位、卷曲、卡住、感染和 最重要的是,植入后会迅速生物污染。这会导致变化和不可预测的情况 送货。相反,我们正在开发光激活仓库或 PAD 方法并将其应用于 胰岛素的使用。通过 PAD 方法,将含有胰岛素的材料注射到皮肤中,就像 常规胰岛素,但保持不活动状态,直到体外光源刺激 通过光将注射材料通过皮肤释放胰岛素。我们的第一代 PAD 设计 通过光裂解连接体将胰岛素连接到聚合物上。当 LED 发出的光脉冲亮起时 这种物质,胰岛素被释放,释放量与光量成正比。我们 已经证明这些材料可以在糖尿病动物中发挥作用,释放胰岛素并减少血液 葡萄糖。尽管取得了这一成功,这些第一代材料的性能使其 不适合人类使用。具体来说,用于确保胰岛素保持在 注射部位占材料的 90% 以上,这意味着存在的总胰岛素少于 人类功效需要什么。此外,胰岛素的低密度意味着胰岛素的速率 光裂解也不充分。因此,我们提出多种方法来解决 这些问题。在具体目标 1 中,我们正在创造多种新型 PAD 材料,以消除聚合物 我们第一代材料所需的材料,这样做创造出密度更高的材料 90%是胰岛素。在 Specific Aim 2 中,我们正在整合新的光切割连接器,该连接器将释放 使用更高波长的光来注射胰岛素。这将增加到达的光量 储存,因此易于释放胰岛素,因为较长的光波长可以穿透组织 更容易。最后,在具体目标 3 中,我们正在仔细研究这些新材料的能力 控制糖尿病动物的血糖。通过实现这三个目标,我们预计创建一个 连续可变蛋白质递送的新的革命性方法,一种最大限度地减少 侵入性,并最大化治疗与患者需求的密切匹配。     关联    成功完成拟议的工作将创造一种新的胰岛素管理方法,  有效地消除了通常所需的大部分注射或泵的需要,并减少了  血糖的变化。  这有可能提高生活质量和生活质量  依赖胰岛素​​生存的糖尿病患者的健康。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
In vivo variable and multi-day response from an insulin-releasing photoactivated depot.
体内胰岛素释放光激活库的可变和多天反应。
  • DOI:
    10.1016/j.bmcl.2023.129388
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Nadendla,Karthik;Chintala,Swetha;Kover,Karen;Friedman,SimonH
  • 通讯作者:
    Friedman,SimonH
The Issue of Tissue: Approaches and Challenges to the Light Control of Drug Activity: A Mini-Review.
组织问题:药物活性光控制的方法和挑战:小型审查。
  • DOI:
    10.1002/cptc.202100001
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
  • 通讯作者:
A Light Activated Glucagon Trimer with Resistance to Fibrillation.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SIMON H FRIEDMAN其他文献

SIMON H FRIEDMAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SIMON H FRIEDMAN', 18)}}的其他基金

Continuously Variable Protein Delivery Using a Photoactivated Depot
使用光激活库进行连续可变的蛋白质递送
  • 批准号:
    10379467
  • 财政年份:
    2020
  • 资助金额:
    $ 38.75万
  • 项目类别:
Continuously Variable Protein Delivery Using a Photoactivated Depot
使用光激活库进行连续可变的蛋白质递送
  • 批准号:
    10197122
  • 财政年份:
    2020
  • 资助金额:
    $ 38.75万
  • 项目类别:
Synthetic and Analytical Methods Targeting Telomerase
靶向端粒酶的合成和分析方法
  • 批准号:
    6874956
  • 财政年份:
    2003
  • 资助金额:
    $ 38.75万
  • 项目类别:
Synthetic and Analytical Methods Targeting Telomerase
靶向端粒酶的合成和分析方法
  • 批准号:
    7017738
  • 财政年份:
    2003
  • 资助金额:
    $ 38.75万
  • 项目类别:
Synthetic and Analytical Methods Targeting Telomerase
靶向端粒酶的合成和分析方法
  • 批准号:
    7211402
  • 财政年份:
    2003
  • 资助金额:
    $ 38.75万
  • 项目类别:
Synthetic and Analytical Methods Targeting Telomerase
靶向端粒酶的合成和分析方法
  • 批准号:
    6729008
  • 财政年份:
    2003
  • 资助金额:
    $ 38.75万
  • 项目类别:
Synthetic and Analytical Methods Targeting Telomerase
靶向端粒酶的合成和分析方法
  • 批准号:
    6574553
  • 财政年份:
    2003
  • 资助金额:
    $ 38.75万
  • 项目类别:
FULLERENE BASED INHIBITORS OF HIV 1 PROTEASE: STRUCTURE BASED DESIGN
基于富勒烯的 HIV 1 蛋白酶抑制剂:基于结构的设计
  • 批准号:
    6456705
  • 财政年份:
    2001
  • 资助金额:
    $ 38.75万
  • 项目类别:
FULLERENE BASED INHIBITORS OF HIV 1 PROTEASE: STRUCTURE BASED DESIGN
基于富勒烯的 HIV 1 蛋白酶抑制剂:基于结构的设计
  • 批准号:
    6347867
  • 财政年份:
    2000
  • 资助金额:
    $ 38.75万
  • 项目类别:
FULLERENE BASED INHIBITORS OF HIV 1 PROTEASE: STRUCTURE BASED DESIGN
基于富勒烯的 HIV 1 蛋白酶抑制剂:基于结构的设计
  • 批准号:
    6220237
  • 财政年份:
    1999
  • 资助金额:
    $ 38.75万
  • 项目类别:

相似海外基金

The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
  • 批准号:
    EP/Z000920/1
  • 财政年份:
    2025
  • 资助金额:
    $ 38.75万
  • 项目类别:
    Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
  • 批准号:
    FT230100276
  • 财政年份:
    2024
  • 资助金额:
    $ 38.75万
  • 项目类别:
    ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
  • 批准号:
    MR/X024261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.75万
  • 项目类别:
    Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
  • 批准号:
    DE240100388
  • 财政年份:
    2024
  • 资助金额:
    $ 38.75万
  • 项目类别:
    Discovery Early Career Researcher Award
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
  • 批准号:
    2232190
  • 财政年份:
    2023
  • 资助金额:
    $ 38.75万
  • 项目类别:
    Continuing Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
  • 批准号:
    2337595
  • 财政年份:
    2023
  • 资助金额:
    $ 38.75万
  • 项目类别:
    Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
  • 批准号:
    23K17514
  • 财政年份:
    2023
  • 资助金额:
    $ 38.75万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Analysis of thermoregulatory mechanisms by the CNS using model animals of female-dominant infectious hypothermia
使用雌性传染性低体温模型动物分析中枢神经系统的体温调节机制
  • 批准号:
    23KK0126
  • 财政年份:
    2023
  • 资助金额:
    $ 38.75万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
  • 批准号:
    2842926
  • 财政年份:
    2023
  • 资助金额:
    $ 38.75万
  • 项目类别:
    Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
  • 批准号:
    NC/X001644/1
  • 财政年份:
    2023
  • 资助金额:
    $ 38.75万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了