Discovery of craniofacial genes capable of compensation through evolutionary mutant model
通过进化突变模型发现能够补偿的颅面基因
基本信息
- 批准号:10606667
- 负责人:
- 金额:$ 4.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AmazeAnimal ModelAtlasesBiological AssayBranchial arch structureCRISPR/Cas technologyCartilageCellsCephalicChromatinCleft PalateClustered Regularly Interspaced Short Palindromic RepeatsCodeCongenital AbnormalityCraniofacial AbnormalitiesCraniosynostosisDataDeglutition DisordersDevelopmental GeneDiseaseElementsEnhancersEthmoid bone structureEtiologyExhibitsFaceFinancial compensationFishesGasterosteidaeGene ExpressionGene Expression ProfileGene-ModifiedGenesGeneticGenetic TranscriptionGenus HippocampusGoalsHeadHealthHumanIn Situ HybridizationInduced MutationKnock-outKnowledgeLaboratory StudyLeadLibrariesMicrocephalyModelingMorphologyMutationNeural CrestNeural Crest CellOdontomaOutcomePathway AnalysisPatientsPhenocopyPlayProteinsRNARegulatory ElementResearchResolutionRoleSignal TransductionSkeletonStructureSymptomsSyndromeSystemTestingTooth LossTooth structureUntranslated RNAVariantVertebratesWorkZebrafishbonecartilage developmentcraniofacialcraniofacial bonecraniofacial developmentcraniofacial disordercraniumdevelopmental geneticsepigenomicsgene functiongene networkgene regulatory networkgenome-widehuman diseaseimprovedmembermutantnovelprematuresingle cell analysissingle cell sequencingsingle-cell RNA sequencingtooltumorwhole genome
项目摘要
The craniofacial skeleton of vertebrates develops under the guidance of highly
conserved gene regulatory networks active in cranial neural crest cells. Alterations to these
networks can lead to numerous human disorders such as cleft palate, premature closing of the
skull, and reduced teeth size. Laboratory studies of traditional animal models have contributed
to our understanding of the functional role of the core gene networks but have largely involved
significant gene modifications through induced mutations. As such, these systems may be less
fruitful for discovering how craniofacial gene networks adapt to gene loss and unique
morphologies because the abrogation of gene function can have a significant systemic effect. A
complementary approach is the study of evolutionary mutant models with adaptations that
recapitulate human diseases with similar altered morphology and/or gene changes. Variation
that is detrimental in humans may be neutral or even beneficial in evolutionary mutant models,
therefore allowing the study of gene regulatory networks in the context of normal organismal
function. Previously, limited genetic tools necessitated examining craniofacial models in select
animal models. Recent advances in sequencing (e.g. single cell) and functional (e.g. CRISPR)
technologies enable fruitful studies in less traditional species. By integrating single cell analysis,
whole genome comparisons, and functional assays, gene regulatory networks can be
successfully compared across species. My project will evaluate craniofacial gene network
conservation and malleability through cross species comparisons and studies of syngnathid
fishes (pipefish, seahorses, and seadragons). These amazing fish have elongated ethmoid
bones, altered hyoids, and a complete loss of teeth. In addition, we recently discovered that
syngnathids have lost key craniofacial developmental genes (fgf3 and fgf4) that we hypothesize
has led to rewiring of craniofacial gene regulatory networks. First, I will complete single cell
sequencing to capture the RNA and chromatin accessibility of cells in zebrafish and stickleback
(fish models with ‘normal’ craniofacial features), and pipefish (evolutionary mutant model).
Second, I will build whole genome alignments of these fish and 13 other vertebrates to identify
regulatory elements. Third, I will functionally test five identified regulatory elements using
zebrafish. These three approaches will reveal how well conserved craniofacial gene expression
patterns and sequences are across numerous species. In addition, genes and sequences
unique to syngnathids may play a role in adaptation to gene loss and produce altered faces, and
may identify novel genes and regulatory factors that can lead to human therapies.
脊椎动物的颅面骨骼是在高度的
在颅神经嵴细胞中活跃的保守基因调控网络。这些改动
网络可以导致许多人类疾病,如腭裂,过早关闭的
头骨和牙齿变小传统动物模型的实验室研究
我们对核心基因网络的功能作用的理解,但在很大程度上涉及
通过诱导突变进行显著的基因修饰。因此,这些系统可能更少
对于发现颅面基因网络如何适应基因丢失和独特的
这是因为基因功能的废除可能具有显著的系统性影响。一
一种互补的方法是研究具有适应性的进化突变模型,
以类似的改变的形态和/或基因变化概括人类疾病。变化
对人类有害的基因在进化突变模型中可能是中性的,甚至是有益的,
因此,允许在正常生物体的背景下研究基因调控网络,
功能以前,有限的遗传工具需要检查颅面模型,
动物模型测序(例如单细胞)和功能(例如CRISPR)的最新进展
技术使对不太传统的物种进行富有成效的研究成为可能。通过整合单细胞分析,
全基因组比较和功能测定,基因调控网络可以是
成功地进行了跨物种的比较。我的项目将评估颅面基因网络
通过对海龙类的跨物种比较和研究,
鱼类(尖嘴鱼、海马和海龙)。这些神奇的鱼有着细长的筛骨
骨头舌骨变形牙齿完全脱落另外,我们最近发现,
我们推测,海龙类已经丢失了关键的颅面发育基因(fgf 3和fgf 4),
导致了颅面基因调控网络的重组。首先,我将完成单细胞
测序以捕获斑马鱼和棘鱼细胞的RNA和染色质可及性
(fish具有“正常”颅面特征的模型)和海龙(进化突变模型)。
其次,我将建立这些鱼和其他13种脊椎动物的全基因组比对,
监管要素。第三,我将对五个确定的监管要素进行功能测试,
斑马鱼这三种方法将揭示颅面基因表达的保守程度
模式和序列在许多物种中都存在。此外,基因和序列
海龙科特有的一种基因可能在适应基因缺失和改变面孔方面发挥作用,
可能会发现新的基因和调节因子,可以导致人类治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hope M Healey其他文献
Hope M Healey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 4.12万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 4.12万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 4.12万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 4.12万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 4.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 4.12万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 4.12万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 4.12万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 4.12万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 4.12万 - 项目类别:
Grant-in-Aid for Early-Career Scientists