Flexible representation of speech in human auditory cortex
人类听觉皮层中语音的灵活表示
基本信息
- 批准号:10605606
- 负责人:
- 金额:$ 3.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccentAcousticsAddressAreaAuditoryAuditory areaBehavior ControlBehavioralBehavioral ResearchBrainCategoriesClinicalCodeCognitiveCommunication impairmentComplementCuesDataDimensionsDoctor of PhilosophyEffectivenessElectrocorticogramElectroencephalographyElectrophysiology (science)EngineeringEnvironmentFrequenciesGeneral PopulationGoalsHearingHumanInterventionLaboratoriesLanguageLinguisticsLinkMapsMeasurableMeasuresModelingNeurobiologyNeurologicNeurosciencesNoisePearPopulationPsychophysicsResearchResearch TrainingScalp structureSchizophreniaSensorySignal TransductionSourceSpeechSpeech AcousticsSpeech PerceptionStimulusStructure of superior temporal sulcusSuperior temporal gyrusSurfaceSystemTemporal LobeTestingTheoretical modelTimeTrainingTraining SupportTranslatingUrsidae FamilyVariantWeightWorkautism spectrum disordercareerclear speechclinical applicationcognitive neurosciencecohortcontextual factorsflexibilitygray matterhearing impairmentimprovedinnovationinsightnervous system disorderneural information processingneuromechanismnovelrehabilitation strategyrelating to nervous systemresponsespeech in noisespeech processingspeech recognitiontranslational health science
项目摘要
PROJECT SUMMARY/ABSTRACT
The mapping from acoustics to linguistically relevant speech categories is not fixed; rather, speech recognition
adapts to listening context. For example, the utterances bear and pear differ by as many as 16 spectrotemporal
acoustic dimensions. The relative importance (i.e., the perceptual weight) of each of these acoustic dimensions
in signaling bear vs. pear changes with contextual factors like whether the listening environment is quiet or
noisy and whether the talker speaks in a native or unfamiliar accent. This flexibility or adaptive plasticity is an
important component of how the brain maintains robust speech perception despite considerable variation in
speech acoustics. Indeed, inflexible sensory processing is implicated as a source of perceptual deficits in both
hearing impairment and neurological disorders. Yet, the neural mechanisms underlying adaptive plasticity in
speech perception are poorly understood. To address this gap, the proposed research will leverage access
deep within human auditory cortex obtained through intracerebral stereotactic electroencephalography (sEEG),
by employing sEEG simultaneously with scalp electroencephalography (EEG) and well-established behavioral
tasks for measuring adaptive plasticity. Aim 1 will invoke adaptive plasticity in speech perception with acoustic
noise or a change in short-term input distributions mimicking an ‘accent’ and will relate behavioral changes in
the perceptual weights of acoustic dimensions relative to baseline (i.e., clear speech) to changes in the neural
response profile across the auditory cortical hierarchy. Aim 2 will quantify the relationships between sEEG and
EEG to establish the extent to which intracerebral signatures of adaptive plasticity relate to scalp EEG
signatures measurable in the general population; this will also facilitate region-specific interpretation of EEG.
The work will provide novel insight into the cortical mechanisms of adaptive plasticity in speech perception,
with implications for neurobiological models and clinical applications. Our innovative combination of
simultaneous scalp EEG with spatially specific, high signal-to-noise ratio sEEG will create a highly informative
link across noninvasive and intracranial electrophysiology. Project completion also will provide the applicant
with training in cognitive neuroscience of speech perception, intracerebral electrophysiology, and approaches
to effectively integrate intracerebral and scalp EEG. This training will complement her strong
engineering/quantitative background and Ph.D. training in auditory temporal coding, scene analysis, and EEG.
This will advance her goal of undertaking a successful independent academic research career in the
neuroscience of human audition and speech perception.
项目总结/摘要
从声学到语言相关语音类别的映射并不固定;相反,语音识别
适应听力环境。例如,bear和pear的发音相差多达16个频谱时间
声学尺寸相对重要性(即,这些声学维度中每一个的感知权重
在信号熊与梨的变化与上下文因素,如是否收听环境是安静的,
是否嘈杂,以及说话者是否用本地口音或不熟悉的口音说话。这种灵活性或适应性可塑性是
重要的组成部分,大脑如何保持强大的语音感知,尽管相当大的变化,
语音声学事实上,不灵活的感觉处理被认为是两者知觉缺陷的来源。
听力障碍和神经系统疾病。然而,适应性可塑性的神经机制,
人们对语音感知知之甚少。为了解决这一差距,拟议的研究将利用访问
通过脑内立体定向脑电图(sEEG)获得的人类听觉皮层深处,
通过同时使用sEEG与头皮脑电图(EEG)和成熟的行为
测量适应性可塑性的任务。目的1将调用语音感知与声学自适应可塑性
噪声或模仿“口音”的短期输入分布的变化,并将
声学维度相对于基线的感知权重(即,清晰的语言)到神经系统的变化
听觉皮层的反应模式目标2将量化sEEG与
EEG以确定自适应可塑性的脑内特征与头皮EEG相关的程度
在一般人群中可测量的签名;这也将有助于EEG的区域特异性解释。
这项工作将提供新的见解皮层机制的适应性可塑性在言语知觉,
这对神经生物学模型和临床应用具有重要意义。我们的创新组合,
具有空间特异性、高信噪比sEEG的同步头皮EEG将创建高度信息化的
无创和颅内电生理学的联系。项目完成后还将提供申请人
接受过言语感知、脑内电生理学和方法的认知神经科学培训,
有效整合脑内和头皮EEG。这种训练将补充她的强壮
工程/定量背景和博士学位听觉时间编码、场景分析和EEG培训。
这将推进她在国际上成功开展独立学术研究事业的目标。
人类听觉和言语感知的神经科学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vibha Viswanathan其他文献
Vibha Viswanathan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vibha Viswanathan', 18)}}的其他基金
Neurophysiological Mechanisms of Speech Intelligibility in Noise - A Quantitative Framework
噪声中言语清晰度的神经生理学机制 - 定量框架
- 批准号:
9788035 - 财政年份:2018
- 资助金额:
$ 3.35万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Launch Supplement