Neurobiologically-Based Subtyping of Multi-Cohort Samples with MDD and PTSD Symptoms
具有 MDD 和 PTSD 症状的多队列样本的基于神经生物学的亚型
基本信息
- 批准号:10609903
- 负责人:
- 金额:$ 55.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-15 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AgeAlgorithmsArousalAttentionBehaviorBiological TestingBrainBrain regionCategoriesCharacteristicsChronicClassificationClinicalCollaborationsControl GroupsCoupledDataData SetDevelopmentDiagnosisDiagnosticDimensionsDiseaseDisease modelDorsalExposure toFrightFunctional Magnetic Resonance ImagingFutureGenderGoalsHeterogeneityHybridsIndividualInfrastructureLife StressMajor Depressive DisorderMapsMedicalMental disordersModelingModernizationNeurobiologyParticipantPatientsPatternPopulationPost-Traumatic Stress DisordersRecording of previous eventsResearchResearch Domain CriteriaResourcesRestSamplingSeverity of illnessSleep disturbancesStressStressful EventSymptomsSyndromeTechnologyTestingTimeTraumaalgorithm trainingbiobankbiotypesbrain circuitrybrain dysfunctioncohortcomorbiditydepressive symptomsdisease classificationeffective therapyexperienceinterestlarge datasetslearning strategyneuralneural circuitneurobiological mechanismneuropsychiatric symptomnovelpatient subsetspediatric traumaprecision medicinepsychiatric comorbiditypsychological traumareward processingsupervised learningsymptom clustertherapy designtranslational neurosciencetrauma exposureunsupervised learning
项目摘要
ABSTRACT
Significant symptom overlap and high rates of co-occurrence between syndromes of posttraumatic stress
disorder (PTSD) and major depressive disorder (MDD) call into question whether the two are distinct disorders.
The onset and course of both syndromes are strongly influenced by environmental variables. We hypothesize
that a continuum of life stress or adversity and an independent continuum of psychological trauma conspire to
influence the onset of PTSD and MDD (where at least one trauma exposure is required for PTSD). Our
overarching goal is to identify and compare neural signatures of MDD, PTSD, symptom features common to
PTSD and MDD, and heretofore unrecognized neurobiologically-defined syndromes. Therefore, we plan to
investigate neural signatures with supervised learning, and to identify biotypes that cut across disorders (PTSD
and MDD) with unsupervised learning, an approach that can better explain contributions of trauma, stressful
life events, and disease characteristics than possible with DSM-disorders. Rather than subtyping patients on
the basis of clinical symptoms or DSM-defined diagnoses, our goal is to identify distinct clusters of
neurobiological subtypes with disrupted neural signatures derived from resting-state fMRI. In Aim 1 we propose
to train algorithms with supervised learning to detect neural signatures from resting fMRI data that can classify
DSM diagnosis of comorbid PTSD and MDD, PTSD only, MDD only, and Controls (no psychiatric disorder).
The analysis will be performed separately with MDD and Control groups who experienced criterion-A trauma or
stressful life events, and those who did not. In Aim 2, we plan to use supervised learning in MDD and PTSD
patients to identify neural signatures from resting-state fMRI data associated with four trans-diagnostic
symptoms that include disrupted sleep, irritability, concentration difficulties, and loss of interest. In Aim 3, we
propose to apply unsupervised learning methods to identify novel biotypes associated with specific symptoms
or symptom clusters. The algorithms will employ rsfMRI features in patients with (1) PTSD only, (2) MDD only
and (2) across PTSD, MDD, and comorbid PTSD+MDD patients in order to identify potential trans-diagnostic
biotypes that cut across DSM boundaries. We will investigate associations of diagnosis-specific and trans-
diagnostic biotypes derived from unsupervised learning with stressful life events, trauma exposure,
developmental stage at time of exposure, psychiatric comorbidities, medical comorbidities, illness chronicity,
illness severity, gender, and age. The overlapping and intersecting patterns that maps circuit disruption to
psychiatric syndromes presents a daunting challenge in designing treatments that intervene at the circuit level.
Developing a neurobiologically-based nosology that maps to clinical symptoms and syndromes represents a
major advance in translational neuroscience. The advent of modern brain stimulation technology offers an
unprecedented possibility of intervening at the circuit level with precision medicine strategies.
抽象的
创伤后压力综合征之间的明显症状重叠和高率的同发生率
疾病(PTSD)和主要抑郁症(MDD)质疑这两者是否是不同的疾病。
两种综合征的开始和过程都受到环境变量的强烈影响。我们假设
生活压力或逆境的连续性以及心理创伤的独立连续性共谋
影响PTSD和MDD的发作(其中至少需要一种创伤PTSD的创伤)。我们的
总体目标是识别和比较MDD,PTSD,症状特征的神经特征
PTSD和MDD,以及迄今未识别的神经生物学定义的综合征。因此,我们计划
通过有监督的学习调查神经信号,并确定跨疾病的生物型(PTSD)
和MDD)有无监督的学习,这种方法可以更好地解释创伤的贡献
生命事件和疾病特征比DSM抑制剂所能。而不是使患者在
临床症状或DSM定义诊断的基础,我们的目标是确定
神经生物学亚型的神经信号破坏,从静止状态fMRI衍生出。在AIM 1中,我们建议
通过有监督的学习来培训算法,以检测可以通过静止的fMRI数据进行分类的神经信号
DSM诊断合并症PTSD和MDD,仅PTSD,仅MDD和对照(无精神疾病)。
分析将与经历过标准的MDD和对照组分别进行 -
强调生活事件,以及那些没有的人。在AIM 2中,我们计划在MDD和PTSD中使用受监督的学习
患者从静止状态fMRI数据中识别与四个反诊断相关的静止状态fMRI数据
症状包括睡眠中断,易怒,集中困难和失去兴趣。在AIM 3中,我们
建议采用无监督的学习方法来识别与特定症状相关的新型生物型
或症状群。该算法将仅在(1)PTSD患者中使用RSFMRI功能,(2)MDD
(2)在PTSD,MDD和合并症PTSD+MDD患者中,以识别潜在的反式诊断
跨DSM边界切割的生物型。我们将研究诊断特异性和反式的关联
诊断性生物型从无监督的学习中,带有压力性的生活事件,创伤暴露,
暴露时的发育阶段,精神病合并症,医学合并症,疾病慢性,
疾病的严重程度,性别和年龄。将电路中断映射到的重叠和相交模式
精神病综合症在设计在电路级别进行干预的治疗方面提出了艰巨的挑战。
开发基于神经生物学的细胞学,该细胞学局限于临床症状和综合症代表
转化神经科学的重大进展。现代大脑刺激技术的出现提供了
在电路一级与精确医学策略进行干预的前所未有的可能性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RAJENDRA A MOREY其他文献
RAJENDRA A MOREY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RAJENDRA A MOREY', 18)}}的其他基金
Mapping Subject-Specific Structural and Functional Connectivity to Parse the Unique Contributions of Subconcussive Blast, Mild TBI, and PTSD
映射特定主题的结构和功能连接性,以解析亚脑震荡爆炸、轻度 TBI 和 PTSD 的独特贡献
- 批准号:
10578716 - 财政年份:2020
- 资助金额:
$ 55.95万 - 项目类别:
Mapping Subject-Specific Structural and Functional Connectivity to Parse the Unique Contributions of Subconcussive Blast, Mild TBI, and PTSD
映射特定主题的结构和功能连接性,以解析亚脑震荡爆炸、轻度 TBI 和 PTSD 的独特贡献
- 批准号:
10426070 - 财政年份:2020
- 资助金额:
$ 55.95万 - 项目类别:
Investigating the Neural Basis of Shame and Guilt in Veterans with Posttraumatic Stress Disorder
调查患有创伤后应激障碍的退伍军人羞耻和内疚的神经基础
- 批准号:
10291783 - 财政年份:2019
- 资助金额:
$ 55.95万 - 项目类别:
Investigating the Neural Basis of Shame and Guilt in Veterans with Posttraumatic Stress Disorder
调查患有创伤后应激障碍的退伍军人羞耻和内疚的神经基础
- 批准号:
9868198 - 财政年份:2019
- 资助金额:
$ 55.95万 - 项目类别:
Investigating the Neural Basis of Shame and Guilt in Veterans with Posttraumatic Stress Disorder
调查患有创伤后应激障碍的退伍军人羞耻和内疚的神经基础
- 批准号:
10427236 - 财政年份:2019
- 资助金额:
$ 55.95万 - 项目类别:
Brain Systems for Fear Generalization and Threat Processing in PTSD
创伤后应激障碍 (PTSD) 中恐惧泛化和威胁处理的大脑系统
- 批准号:
8811835 - 财政年份:2014
- 资助金额:
$ 55.95万 - 项目类别:
Brain Systems for Fear Generalization and Threat Processing in PTSD
创伤后应激障碍 (PTSD) 中恐惧泛化和威胁处理的大脑系统
- 批准号:
8635032 - 财政年份:2014
- 资助金额:
$ 55.95万 - 项目类别:
White Matter Damage in Subconcussive Blast Exposure
亚震荡爆炸中的白质损伤
- 批准号:
8815240 - 财政年份:2014
- 资助金额:
$ 55.95万 - 项目类别:
White Matter Damage in Subconcussive Blast Exposure
亚震荡爆炸中的白质损伤
- 批准号:
9124954 - 财政年份:2014
- 资助金额:
$ 55.95万 - 项目类别:
Brain Systems for Fear Generalization and Threat Processing in PTSD
创伤后应激障碍 (PTSD) 中恐惧泛化和威胁处理的大脑系统
- 批准号:
8967166 - 财政年份:2014
- 资助金额:
$ 55.95万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Randomized Control Trial of oxygen therapy in Children and Adolescents with Down Syndrome and Obstructive Sleep Apnea
唐氏综合症和阻塞性睡眠呼吸暂停儿童和青少年氧疗的随机对照试验
- 批准号:
10518497 - 财政年份:2022
- 资助金额:
$ 55.95万 - 项目类别:
Data-Driven Sleep Biomarkers of Brain Health, Heart Health, and Mortality
数据驱动的大脑健康、心脏健康和死亡率的睡眠生物标志物
- 批准号:
10684096 - 财政年份:2022
- 资助金额:
$ 55.95万 - 项目类别:
Sex-Dependent Impact of Transcutaneous Vagal Nerve Stimulation on the Stress Response Circuitry and Autonomic Dysregulation in Major Depression
经皮迷走神经刺激对重度抑郁症应激反应回路和自主神经失调的性别依赖性影响
- 批准号:
10349464 - 财政年份:2020
- 资助金额:
$ 55.95万 - 项目类别:
Redefining Large-Scale Functional Network Models of Posttraumatic Stress Disorder through Resolution Limit-Free Community Detection
通过分辨率无限制的社区检测重新定义创伤后应激障碍的大规模功能网络模型
- 批准号:
10213605 - 财政年份:2020
- 资助金额:
$ 55.95万 - 项目类别:
Redefining Large-Scale Functional Network Models of Posttraumatic Stress Disorder through Resolution Limit-Free Community Detection
通过分辨率无限制的社区检测重新定义创伤后应激障碍的大规模功能网络模型
- 批准号:
10066765 - 财政年份:2020
- 资助金额:
$ 55.95万 - 项目类别: