Specificity and Selectivity in Protein-Ion Binding
蛋白质-离子结合的特异性和选择性
基本信息
- 批准号:10609424
- 负责人:
- 金额:$ 31.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAlgorithmsBindingBinding ProteinsBiologicalBiological ProcessC2 DomainChargeCommunicable DiseasesCommunitiesComplexDataDevelopmentDiagnosticEF Hand MotifsEducational workshopElectrostaticsFree EnergyFutureGeometryGoalsHeart DiseasesInfrastructureIonsKnowledgeLigandsMalignant NeoplasmsMediatingMetabolismMetal Ion BindingMetalloproteinsMetalsModelingMolecularMovementNeurodegenerative DisordersPenetrationPerformancePhysicsPlayPotential EnergyProteinsPublic HealthQuantum MechanicsResearchRoleScienceSignal TransductionSiteSodium ChlorideSpecificityStructureSystemTherapeuticThermodynamicsTimeTrainingTransition Elementscomputer studiescomputerized toolsdesigndiagnostic strategydriving forceimprovedinhibitorinnovationinorganic phosphateinsightmechanical energymodels and simulationmolecular dynamicsmolecular mechanicsnext generationnovel diagnosticsnovel therapeuticsphysical modelprotonationresponsesimulationsimulation softwaresmall moleculetherapeutic proteintherapeutic targettreatment fees
项目摘要
SUMMARY
Over 30% of all proteins bind metal ions, including transition metals, for structural and
functional purposes. Even though there are rich experimental structural and
thermodynamic information on protein-ion complexes, our understanding of the physical
basis for the specificity and selectivity in protein-ion recognition remains lacking. There is
a great need for accurate physical models and efficient simulation software to enable
computational study of protein-ion systems. We propose to develop a next generation
classical force field AMOEBA+, based on the existing AMOEBA potential, to
systematically model permanent electrostatics, repulsion, dispersion, charge
penetration, polarization, charge transfer, and ligand field effect after quantum
mechanical energy decomposition and experimental data. The new potential and high-
performance molecular simulation software (Tinker for CPU & GPU systems) will allow
us to comprehend the structural, physical and thermodynamic driving forces underlying
protein-ion recognition using molecular dynamics simulations. Given the fundamental
importance of protein interaction with transition metals including Zn, Cu, Ni, Co, Fe, and
Mn, this research will have a broad impact on advancing our scientific knowledge about
ions in biomolecular structure and function, and lead to new computational tools to
accelerate the design of new diagnostic and therapeutic molecules targeting protein-ion
interactions.
总结
超过30%的所有蛋白质结合金属离子,包括过渡金属,用于结构和功能。
功能目的。尽管有丰富的实验结构和
蛋白质离子复合物的热力学信息,我们对物理的理解,
蛋白质离子识别的特异性和选择性的基础仍然缺乏。有
对精确的物理模型和高效的仿真软件的巨大需求,
蛋白质离子系统的计算研究。我们建议开发下一代
经典力场AMOEBA+,基于现有的AMOEBA潜力,
系统地模拟永久静电、排斥、色散、电荷
量子化后的穿透、极化、电荷转移和配体场效应
机械能分解和实验数据。新的潜力和高-
性能分子模拟软件(CPU和GPU系统的Tinker)将允许
我们理解的结构,物理和热力学驱动力的基础
蛋白质离子识别的分子动力学模拟。鉴于基本的
蛋白质与过渡金属(包括Zn、Cu、Ni、Co、Fe和
嗯,这项研究将对推进我们的科学知识产生广泛的影响,
离子在生物分子结构和功能,并导致新的计算工具,
加速设计新的诊断和治疗分子靶向蛋白质离子
交互.
项目成果
期刊论文数量(59)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Efficient Approach to Large-Scale Ab Initio Conformational Energy Profiles of Small Molecules.
- DOI:10.3390/molecules27238567
- 发表时间:2022-12-05
- 期刊:
- 影响因子:0
- 作者:Wang Y;Walker BD;Liu C;Ren P
- 通讯作者:Ren P
Calculating protein-ligand binding affinities with MMPBSA: Method and error analysis.
- DOI:10.1002/jcc.24467
- 发表时间:2016-10-15
- 期刊:
- 影响因子:3
- 作者:Wang, Changhao;Nguyen, Peter H.;Pham, Kevin;Huynh, Danielle;Le, Thanh-Binh Nancy;Wang, Hongli;Ren, Pengyu;Luo, Ray
- 通讯作者:Luo, Ray
Calculating binding free energies of host-guest systems using the AMOEBA polarizable force field.
- DOI:10.1039/c6cp02509a
- 发表时间:2016-11-09
- 期刊:
- 影响因子:0
- 作者:Bell DR;Qi R;Jing Z;Xiang JY;Mejias C;Schnieders MJ;Ponder JW;Ren P
- 通讯作者:Ren P
An empirical extrapolation scheme for efficient treatment of induced dipoles.
- DOI:10.1063/1.4964866
- 发表时间:2016-10
- 期刊:
- 影响因子:0
- 作者:Andrew C. Simmonett;Frank C. Pickard;J. Ponder;B. Brooks
- 通讯作者:Andrew C. Simmonett;Frank C. Pickard;J. Ponder;B. Brooks
Capturing Many-Body Interactions with Classical Dipole Induction Models.
使用经典偶极感应模型捕获多体相互作用
- DOI:10.1021/acs.jctc.7b00225
- 发表时间:2017-06-13
- 期刊:
- 影响因子:5.5
- 作者:Liu C;Qi R;Wang Q;Piquemal JP;Ren P
- 通讯作者:Ren P
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAY PONDER其他文献
JAY PONDER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAY PONDER', 18)}}的其他基金
Specificity and Selectivity in Protein-Ion Binding
蛋白质-离子结合的特异性和选择性
- 批准号:
8860357 - 财政年份:2015
- 资助金额:
$ 31.29万 - 项目类别:
Specificity and Selectivity in Protein-Ion Binding
蛋白质-离子结合的特异性和选择性
- 批准号:
10397564 - 财政年份:2015
- 资助金额:
$ 31.29万 - 项目类别:
Specificity and Selectivity in Protein-Ion Binding
蛋白质-离子结合的特异性和选择性
- 批准号:
9062465 - 财政年份:2015
- 资助金额:
$ 31.29万 - 项目类别:
Specificity and Selectivity in Protein-Ion Binding
蛋白质-离子结合的特异性和选择性
- 批准号:
10569447 - 财政年份:2015
- 资助金额:
$ 31.29万 - 项目类别:
2014 Computational Chemistry Gordon Research Conference & Gordon Research Seminar
2014年计算化学戈登研究会议
- 批准号:
8718250 - 财政年份:2014
- 资助金额:
$ 31.29万 - 项目类别:
Development of a Next-Generation Nucleic Acid Force Field
下一代核酸力场的开发
- 批准号:
10000923 - 财政年份:2013
- 资助金额:
$ 31.29万 - 项目类别:
Development of a Next-Generation Nucleic Acid Force Field
下一代核酸力场的开发
- 批准号:
9789332 - 财政年份:2013
- 资助金额:
$ 31.29万 - 项目类别:
Development of a Next-Generation Nucleic Acid Force Field
下一代核酸力场的开发
- 批准号:
10242194 - 财政年份:2013
- 资助金额:
$ 31.29万 - 项目类别:
DEVELOPMENT OF A NEXT-GENERATION NUCLEIC ACID FORCE FIELD
下一代核酸力场的开发
- 批准号:
9041607 - 财政年份:2013
- 资助金额:
$ 31.29万 - 项目类别:
DEVELOPMENT OF A NEXT-GENERATION NUCLEIC ACID FORCE FIELD
下一代核酸力场的开发
- 批准号:
8636493 - 财政年份:2013
- 资助金额:
$ 31.29万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 31.29万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 31.29万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 31.29万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 31.29万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 31.29万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 31.29万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 31.29万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 31.29万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 31.29万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 31.29万 - 项目类别:
Research Grant














{{item.name}}会员




