Circuit mechanisms of arbitration between distinct reinforcement learning systems
不同强化学习系统之间的仲裁电路机制
基本信息
- 批准号:10608739
- 负责人:
- 金额:$ 7.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAnatomyAnimalsArbitrationBehaviorBehavior monitoringBehavioral ModelBrainChronicComputing MethodologiesConfocal MicroscopyCorpus striatum structureDataDecision MakingDiseaseDorsalElectrophysiology (science)EnvironmentExcitatory Postsynaptic PotentialsExhibitsFutureGeneticGoalsHumanImplantIn VitroInjectionsInterneuronsKnowledgeLateralLeadLearningLogicMeasuresMedialMediatingMethodsMicroelectrodesModelingNeuronsObsessive-Compulsive DisorderPatternPopulationPrefrontal CortexProcessPsyche structurePsychological reinforcementRattusReportingStructureSynapsesSystemTechniquesTestingTheoretical StudiesTracerUncertaintyViralVisualWhole-Cell RecordingsWorkbehavioral studycell typecognitive taskexperienceflexibilityfree behaviorin vivomicroscopic imagingneuralneural circuitnovelnovel therapeuticsoptogeneticsresponsesimulationstatistics
项目摘要
PROJECT SUMMARY
Animals can exhibit goal-directed behaviors in novel environments, despite limited experience
with them. How does the brain make and use inferences about the underlying statistics and
generative structure of environments to guide behavior? The field of reinforcement learning refers
to this capacity as “model-based” reasoning, meaning that it relies on an internal model of the
structure of the world. Critically, this internal model can be used to flexibly estimate the best
actions by mental simulation or planning, without direct experience. In contrast, in “model-free”
reinforcement learning, an agent chooses the best action based on direct experience, without
explicit knowledge of the underlying sequential transition structure of a task or environment.
Model-based and model-free mechanisms coexist in the brain and are mediated by distinct
circuits, although the neural circuit mechanisms by which the brain arbitrates between these
decision systems remains unknown. Theoretical and behavioral studies suggest that human
brains use the system that yields value estimates with the lowest uncertainty. The lateral
orbitofrontal cortex (lOFC) is a compelling candidate to perform arbitration because while it is
implicated in model-based reasoning, for instance by enabling inferences about hidden task
states, it lies upstream of the dorsal striatum, which is critical for both model-based and model-
free decision making. Intriguingly, we have found that lOFC neurons project exclusively to the
dorsolateral striatum (DLS), a region critical for model-free behavior, and not the dorsomedial
striatum (DMS), which is critical for model-based behavior. We hypothesize that projection
specific neural circuits in lOFC arbitrate between these systems by suppressing the model-free
system.
I will use state-of-the-art viral, electrophysiological, and computational methods to
determine whether DLS-projecting lOFC neurons mediate uncertainty-based arbitration between
decision-making systems (Aim 1) and characterize the underlying circuit logic that supports
arbitration (Aim 2). By optogenetically tagging DLS-projecting lOFC neurons I will selectively
characterize and perturb their activity while monitoring the behavioral strategy rats use in a task
with latent structure. To determine how arbitration is instantiated in the dorsal striatum I will
optogenetically activate OFC→DLS neurons while recording from different genetic cell types in
the striatum, in vivo and in vitro. We predict that OFC→DLS neurons enable model-based
behavior by activating inhibitory interneurons to suppress the DLS and the model-free system.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Margaret Louise DeMaegd其他文献
Margaret Louise DeMaegd的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 7.41万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 7.41万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 7.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 7.41万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 7.41万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 7.41万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 7.41万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 7.41万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 7.41万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 7.41万 - 项目类别:
Studentship