Salvage of the sulfur and carbon byproducts of S-adenosylmethionine metabolism in pathogenic bacteria
病原菌中S-腺苷甲硫氨酸代谢的硫和碳副产物的回收
基本信息
- 批准号:10610932
- 负责人:
- 金额:$ 15.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-13 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:5&apos-deoxyadenosineAddressAerobicAmino AcidsBacteriaBiological AvailabilityCancer Cell GrowthCarbonCellsConsumptionDNA MethylationEnvironmentEnzymesEthylenesExposure toGene ExpressionGenesGoalsGrowthHealthHumanIn VitroInfectionIntestinesIslandLaboratoriesLiver CirrhosisLower OrganismMetabolicMetabolic PathwayMetabolismMethionineMethodsMutagenesisOrganismPathogenesisPathogenicityPathologyPathway interactionsPersonsPhysiologicalPolyaminesPrevalenceProcessProtein MethylationProteomicsQuantitative Reverse Transcriptase PCRRadiolabeledReactionRegulatory ElementResolutionRoleS-AdenosylhomocysteineS-AdenosylmethionineShunt DeviceSiderophoresSiteStructural GenesSulfateSulfurTestingTherapeuticTherapeutic AgentsTranslatingWorkanalogcostdesignexperimental studyfeedingfitnessgenetic regulatory proteinhomoserine lactonein vivoinhibitorinterestmutantnovelpathogenpathogenic Escherichia colipathogenic bacteriaquorum sensingshunt pathwaytranscriptomics
项目摘要
Project Summary
Biologically available sulfur is essential for the synthesis of methionine (Met) and its derivative, S-adenosyl-L-
methionine (SAM). SAM is used for diverse metabolic purposes, serving primarily as a methyl donor for DNA
and protein methylation, as a 5’-deoxyadenosyl radical donor for radical-SAM reactions, as an aminopropyl donor
for polyamine synthesis and volved in the synthesis of acyl-homoserine lactone quorum sensing molecules in
bacteria. As a consequence of this metabolism, a dead-end, sulfur-containing byproduct, 5’-methylthioadenosine
(MTA) is formed. MTA is a product inhibitor of polyamine synthesis and MTA accumulation is thought to be toxic.
Since the assimilation of inorganic sulfur is energetically costly and many organisms encounter sulfur-poor
environments, maintaining or salvaging appropriate cellular organic sulfur pools is critical. Moreover, disruption
or reduced functioning of methionine salvage pathways (MSPs) has many health-related consequences
including influences on cancer cell growth and liver cirrhosis; intermediates of the pathway have also been shown
to influence apoptopic processes, while analogs of these intermediates are promising therapeutic agents. Newly
discovered MTA pathways from our laboratory, the DHAP-ethylene and methanethiol shunts, were recently
described, the genes of which appear to be widespread and selectively found among several pathogenic species.
Nonpathogenic species from these genera do not contain these genes. Thus, the hypothesis is that the shunt
genes/enzymes hold some special significance to metabolism of these pathogenic species. Moreover, the same
novel genes and enzymes were recently found to participate in radical SAM reactions to generate and metabolize
5’-deoxyadenosine (5dAdo), a structurally similar byproduct to MTA, which could potentially be recycled for
carbon salvage. The long-term goal will thus be to determine the role and physiological significance of the
DHAP/MTA/5dAdo pathways for sulfur and carbon salvage, and the potential of these pathways to influence the
successful metabolism of extraintestinal pathogenic Escherichia coli (ExPEC), including uropathogenic (UPEC)
strains which contain these genes on a specific pathogenesis island. A specific aim (Aim 1) will be to determine
the precise role of these genes and encoded enzymes and resolve further metabolic steps in sulfur/carbon
salvage via whole cell feeding experiments using radio-labeled (14C) and 13C MTA and 5dAdo metabolites in wild
type and mutant strains. These in vivo studies will be supplemented by in vitro analyses with specific enzymes.
The second aim (Aim 2) will involve resolving how these genes are genetically regulated, an important facet of
sulfur/carbon salvage in these organisms. Resolution of the specific aims of this project have considerable health
relevance as ExPEC/UPEC strains cause major health problems and infect millions of people. It is conceivable
that the identification and resolution of a specific sulfur/carbon salvage pathway essential for
pathogenesis/fitness will open the way to design specific targets to inhibit infections caused by these organisms.
项目摘要
生物可利用硫是合成蛋氨酸(Met)及其衍生物S-腺苷-L-蛋氨酸(S-Adenosyl-L-蛋氨酸)所必需的。
蛋氨酸(SAM)。SAM用于多种代谢目的,主要用作DNA的甲基供体
和蛋白质甲基化,作为自由基-SAM反应的5 ′-脱氧腺苷自由基供体,作为氨丙基供体
用于多胺合成,并参与酰基高丝氨酸内酯群体感应分子的合成,
细菌作为这种代谢的结果,一个死端,含硫的副产物,5 '-甲硫腺苷
(MTA)形成有MTA是多胺合成的产物抑制剂,并且MTA积累被认为是有毒的。
由于无机硫的同化在能量上是昂贵的,并且许多生物体遇到硫缺乏的情况,
因此,维持或挽救适当的细胞有机硫库是至关重要的。此外,中断
甲硫氨酸补救途径(MSP)的功能降低或减少具有许多与健康相关的后果
包括对癌细胞生长和肝硬化的影响;该途径的中间体也已被证明
影响异位过程,而这些中间体的类似物是有前途的治疗剂。新
我们实验室发现的MTA途径,DHAP-乙烯和甲烷乙烷分流,最近被
描述,其中的基因似乎是广泛的,并选择性地发现在几个致病物种。
来自这些属的非致病性物种不包含这些基因。因此,假设分流
基因/酶对这些致病物种的代谢具有某些特殊意义。此外,同
最近发现新的基因和酶参与自由基SAM反应,以产生和代谢
5 '-脱氧腺苷(5dAdo),一种结构上类似于MTA的副产物,可能被回收用于
碳回收因此,长期目标将是确定的作用和生理意义,
DHAP/MTA/5dAdo途径用于硫和碳回收,以及这些途径影响
肠外致病性大肠杆菌(ExPEC),包括尿路致病性大肠杆菌(UPEC)的成功代谢
在特定致病岛上含有这些基因的菌株。一个具体目标(目标1)是确定
这些基因和编码酶的确切作用,并解决硫/碳的进一步代谢步骤
在野生型中使用放射性标记的(14 C)和13 C MTA和5dAdo代谢物通过全细胞饲养实验进行挽救
型和突变株。这些体内研究将通过使用特定酶的体外分析进行补充。
第二个目标(目标2)将涉及解决这些基因是如何被遗传调控的,这是研究的一个重要方面。
这些生物体中的硫/碳回收。决议对本项目的具体目标有相当的卫生
ExPEC/UPEC菌株导致重大健康问题并感染数百万人。可以想象
确定和解决一个特定的硫/碳补救途径是至关重要的,
致病性/适应性的研究将为设计特异性靶标以抑制由这些生物体引起的感染开辟道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Justin Andrew North其他文献
Justin Andrew North的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Justin Andrew North', 18)}}的其他基金
Salvage of the sulfur and carbon byproducts of S-adenosylmethionine metabolism in pathogenic bacteria
病原菌中S-腺苷甲硫氨酸代谢的硫和碳副产物的回收
- 批准号:
10399586 - 财政年份:2020
- 资助金额:
$ 15.6万 - 项目类别:
Characterization of novel sulfur salvage mechanisms in Rodospirillum rubrum
红色红螺菌新型硫回收机制的表征
- 批准号:
8912286 - 财政年份:2014
- 资助金额:
$ 15.6万 - 项目类别:
Characterization of novel sulfur salvage mechanisms in Rodospirillum rubrum
红色红螺菌新型硫回收机制的表征
- 批准号:
8781601 - 财政年份:2014
- 资助金额:
$ 15.6万 - 项目类别:
相似海外基金
Neurotoxicity of deoxyadenosine and neuroprotective effects of adenosine deaminase
脱氧腺苷的神经毒性和腺苷脱氨酶的神经保护作用
- 批准号:
16K08923 - 财政年份:2016
- 资助金额:
$ 15.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification and characterization of methyl-deoxyadenosine in the eukaryotic genome.
真核基因组中甲基脱氧腺苷的鉴定和表征。
- 批准号:
BB/M022994/1 - 财政年份:2015
- 资助金额:
$ 15.6万 - 项目类别:
Research Grant
MECHANISM OF CYTOTOXICITY OF DEOXYADENOSINE AND ANALOGS
脱氧腺苷及其类似物的细胞毒性机制
- 批准号:
3178061 - 财政年份:1986
- 资助金额:
$ 15.6万 - 项目类别:
MECHANISM OF CYTOTOXICITY OF DEOXYADENOSINE AND ANALOGS
脱氧腺苷及其类似物的细胞毒性机制
- 批准号:
3178065 - 财政年份:1986
- 资助金额:
$ 15.6万 - 项目类别:
MECHANISM OF CYTOTOXICITY OF DEOXYADENOSINE AND ANALOGS
脱氧腺苷及其类似物的细胞毒性机制
- 批准号:
3178066 - 财政年份:1986
- 资助金额:
$ 15.6万 - 项目类别:
MOLECULAR CLONING OF BACTERIAL DEOXYCYTIDINE/DEOXYADENOSINE KINASE
细菌脱氧胞苷/脱氧腺苷激酶的分子克隆
- 批准号:
3935271 - 财政年份:
- 资助金额:
$ 15.6万 - 项目类别:
MOLECULAR CLONING OF BACTERIAL DEOXYCYTIDINE/DEOXYADENOSINE KINASE
细菌脱氧胞苷/脱氧腺苷激酶的分子克隆
- 批准号:
3914170 - 财政年份:
- 资助金额:
$ 15.6万 - 项目类别: