CRCNS: Multifocal causal mapping of brain networks supporting human cognition
CRCNS:支持人类认知的大脑网络的多焦点因果图谱
基本信息
- 批准号:10612128
- 负责人:
- 金额:$ 25.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAnteriorAreaBehaviorBehavioralBrainBrain MappingBrain regionCognitionCognitiveComplementComplexComputer ModelsComputing MethodologiesConsumptionCustomDataDevicesDiagnosticDorsalElectroencephalographyEnsureFDA approvedFreedomFunctional Magnetic Resonance ImagingGenerationsGoalsHeadHearingHumanInferior frontal gyrusJudgmentLanguageLateralLeftLesionLocationMagnetic Resonance ImagingMethodsModelingMotorMotor CortexNeuronavigationNeurosciencesParticipantPatientsPatternPopulationProceduresProtocols documentationResearchResponse LatenciesRoleSemanticsSocietiesStandardizationStatistical ModelsSynaptic TransmissionSynaptic plasticitySystemTechniquesTechnologyTestingTherapeuticTimeTranscranial magnetic stimulationWorkbaseclinical applicationcognitive functioncognitive neurosciencecomputerized data processingcomputerized toolscortex mappingdesignelectric fieldexperimental studyin vivoinsightinstrumentlanguage comprehensionlanguage processingmillisecondnetwork modelsneural networkneuroimagingneuronal circuitrynovelnovel strategiesoperationphonologyrelating to nervous systemresponsesemantic processingsoundspeech processingsupport networktooltreatment optimizationvirtual
项目摘要
PROJECT SUMMARY: Neuroimaging methods such as functional MRI and magneto- / electroencephalography (MEG/EEG) cannot directly reveal causal relationships between regional brain activity and behavior. To allow causal inference, transcranial magnetic stimulation (TMS) has been used to perturb local cortical activity to create temporary "virtual lesions”. However, even simple behavioral tasks employ widely distributed brain networks with multiple nodes activated at different millisecond-level latencies, whereas today’s TMS technology is mainly limited to single-channel devices that target only one brain area at a time. The mismatch between the large number of network nodes and the small number of cortical areas we can target with present TMS devices forms a critical barrier in exploring network-level causal inferences in the human brain. To remove this barrier, we need TMS technology that can perturb multiple cortical locations at specific processing stages. Removing this barrier would open entirely new avenues for gaining insight into how complex cognitive functions emerge from cortical networks. For the identification of neural networks underlying cognitive operations, two steps are necessary. First, network nodes are identified as locations where the strength of the TMS-induced electric field and relevant behavioral or neuroimaging-based variables maximally correlate. This can be achieved efficiently using the unprecedented ability of the multichannel TMS array to generate different customized electric field patterns in rapid succession. Next, information flow between the network nodes is explored by stimulating the nodes in rapid temporal succession. For this, the ability of the multichannel array to switch between electric field patterns in milliseconds is crucial. The network-level mapping capabilities of the instrument will be first verified in a testbench experiment in a known network (motor system). We then proceed to studies that identify network nodes underlying language comprehension. Finally, we will use the multifocal stimulation approach to investigate information flow in the language comprehension network and develop a neural mass model of the underlying neuronal circuits for a theoretical basis. In the long term, the wider society may benefit from all applications of the proposed research through network-level TMS therapies that are optimized for modulating functional connectivity between brain regions involved in critical functions such as hearing, speech, and language processing.
项目概要:神经影像学方法,如功能性MRI和磁/脑电图(MEG/EEG)不能直接揭示局部大脑活动和行为之间的因果关系。为了允许因果推理,经颅磁刺激(TMS)已被用来扰乱局部皮层活动,以创建临时的“虚拟病变”。然而,即使是简单的行为任务也需要广泛分布的大脑网络,其中多个节点以不同的毫秒级延迟激活,而今天的TMS技术主要限于单通道设备,每次只针对一个大脑区域。大量的网络节点和少量的皮质区域之间的不匹配,我们可以与目前的TMS设备的目标,形成了一个关键的障碍,在探索人类大脑中的网络层次的因果推理。为了消除这一障碍,我们需要TMS技术,它可以在特定的处理阶段扰乱多个皮层位置。消除这一障碍将为深入了解复杂的认知功能如何从皮层网络中产生开辟全新的途径。为了识别认知操作背后的神经网络,需要两个步骤。首先,网络节点被识别为TMS感应电场的强度与相关的基于行为或神经成像的变量最大相关的位置。这可以使用多通道TMS阵列的前所未有的能力来有效地实现,以快速连续地生成不同的定制电场图案。接下来,网络节点之间的信息流是通过刺激节点在快速的时间连续性。为此,多通道阵列在毫秒内在电场模式之间切换的能力至关重要。该仪器的网络级映射能力将首先在已知网络(电机系统)的测试台实验中进行验证。然后,我们继续研究,确定网络节点的语言理解。最后,我们将使用多焦刺激方法来研究语言理解网络中的信息流,并建立一个神经元回路的神经块模型作为理论基础。从长远来看,更广泛的社会可能会受益于所提出的研究的所有应用,通过网络级TMS疗法,这些疗法被优化用于调节涉及听觉,言语和语言处理等关键功能的大脑区域之间的功能连接。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aapo Nummenmaa其他文献
Aapo Nummenmaa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aapo Nummenmaa', 18)}}的其他基金
Near real-time system for high-resolution computationalTMS navigation
用于高分辨率计算 TMS 导航的近实时系统
- 批准号:
10345482 - 财政年份:2022
- 资助金额:
$ 25.95万 - 项目类别:
Near real-time system for high-resolution computationalTMS navigation
用于高分辨率计算 TMS 导航的近实时系统
- 批准号:
10558627 - 财政年份:2022
- 资助金额:
$ 25.95万 - 项目类别:
CRCNS: Multifocal causal mapping of brain networks supporting human cognition
CRCNS:支持人类认知的大脑网络的多焦点因果图谱
- 批准号:
10654871 - 财政年份:2022
- 资助金额:
$ 25.95万 - 项目类别:
Collaborative robot (cobot) controlled system for transcranial magnetic stimulation
协作机器人(cobot)控制的经颅磁刺激系统
- 批准号:
10177246 - 财政年份:2021
- 资助金额:
$ 25.95万 - 项目类别:
Modeling TMS-induced Cortical Network Activity
模拟 TMS 诱导的皮质网络活动
- 批准号:
9348648 - 财政年份:2015
- 资助金额:
$ 25.95万 - 项目类别:
Modeling TMS-induced Cortical Network Activity
模拟 TMS 诱导的皮质网络活动
- 批准号:
9137686 - 财政年份:2015
- 资助金额:
$ 25.95万 - 项目类别:
Modeling TMS-induced Cortical Network Activity
模拟 TMS 诱导的皮质网络活动
- 批准号:
8581251 - 财政年份:2013
- 资助金额:
$ 25.95万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 25.95万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 25.95万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 25.95万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 25.95万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 25.95万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 25.95万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 25.95万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 25.95万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 25.95万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 25.95万 - 项目类别:
Research Grant