Determining the mechanisms that cause persistent MRSA bloodstream infection by tracking in-host evolution
通过追踪宿主进化来确定导致持续性 MRSA 血流感染的机制
基本信息
- 批准号:10613457
- 负责人:
- 金额:$ 19.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:Antibiotic ResistanceAntibioticsBacteremiaBiochemical PathwayBiologicalBiological AssayBiologyBloodBlood specimenCellsCitric Acid CycleClinicalComplexDataDefectDrug InteractionsDrug ModelingsDrug ToleranceEnvironmentEvolutionExposure toFutureGenesGeneticGenetic ScreeningGenetic screening methodGenomeGenotypeGrowthHospitalizationHumanImmuneImmune ToleranceInfectionKineticsLinkMacrophageMeasuresMetabolic PathwayMetabolismMethodsModelingMolecularMutateMutationNADHPathogenesisPathway interactionsPatient-Focused OutcomesPatientsPhagocytesPhagosomesPharmacotherapyPhenotypePlayPopulation SizesProteinsReactive Oxygen SpeciesResistanceRespiratory BurstRoleSepsisSingle Nucleotide PolymorphismStaphylococcus aureusStaphylococcus aureus infectionStressTestinganalytical toolantibiotic tolerancebacterial genome sequencingchronic infectiondesigneffective therapyexperimental studyfitnessgenomic locusimmune clearancein vivoinnovationinsightmethicillin resistant Staphylococcus aureusmicrobialmortalitymutantnovel strategiesnovel therapeuticspathogenpressurerespiratoryresponsescreeningtrait
项目摘要
Project Summary/Abstract
Bloodstream infection (BSI) due to methicillin-resistant Staphylococcus aureus (MRSA) carries ~20%
mortality [1, 2]. MSRA displays tolerance to antibiotic killing [11], has a propensity to cause persistent BSI (pBSI)
[3], and the duration of pBSI predicts mortality [2, 12-14]. MRSA rarely acquires frank antibiotic resistance during
pBSI [3], highlighting tolerance as an important cause of poor patient outcomes. Antibiotic tolerance is a complex
trait, which is distinct from resistance, and there are significant barriers to its study in vivo that have hampered
progress on understanding the most important mechanisms in clinical settings. In this proposal, we advance an
innovative genetic screening approach to overcome these barriers. Episodes of MRSA-pBSI that occur in
different patients can be viewed as biological replicates of a naturally occurring experiment in microbial evolution.
As bacterial population sizes collapse due to selection from antibiotic and immune pressure, tolerant mutants
will become enriched. Mutations that arise independently in the same genetic loci at a rate that exceed chance
alone, are biologically meaningful. In preliminary studies, using this “genotype-first” approach, we found evidence
for in-host evolution of two genetic pathways strongly linked to antibiotic tolerance. Our central hypothesis is that
mutants that arise during the treatment of MRSA-pBSI contain genetic adaptations for antibiotic and immune
tolerance. We propose to identify and characterize these pathways through the following specific aims:
Aim 1. Determine which genes evolving during MRSA-pBSI are associated with antibiotic tolerance and
energy imbalance. Tolerance mechanisms often involve perturbations in metabolism, causing a ‘low energy’
state that leads to slow turnover of antibiotic targets [4, 5]. Such perturbations could arise through a variety of
redundant pathways that converge on energy dysregulation. Alternatively, in vivo conditions may stress specific
nodes in the cell’s metabolic networks and some pathways may dominate the antibiotic tolerance landscape. We
will utilize our genetic screening approach to identify antibiotic tolerant mutants and determine which genes
evolving during MRSA-pBSI are associated with antibiotic tolerance and energy imbalance.
Aim 2. Determine if TCA cycle defects evolve during MRSA-pBSI due to a host-pathogen-drug
interaction. Antibiotic tolerance can be induced by harsh environments and a leading model is that host immune
pressure in the form of phagocyte-derived reactive oxygen species induces S. aureus into a drug-tolerant state
by reducing flux through the tricarboxylic acid (TCA) cycle [6]. In our preliminary data, we identified TCA cycle
mutants that evolved during MRSA-pBSI. If these mutants evolved by outcompeting wild-type MRSA in
phagosomes, they will display a fitness advantage in this setting. We will utilize these mutants to test this model
directly, by performing experiments where we infect phagocytes and measure survival and drug tolerance.
This study is important for understanding the fundamental biology of persistent MRSA infection and the
mechanisms underlying antibiotic tolerance in vivo. This information will inform the design of novel therapies.
项目摘要/摘要
由于甲氧西林抗葡萄球菌(MRSA)而引起的血液感染(BSI)携带约20%
死亡率[1,2]。 MSRA表现出对抗生素杀戮的耐受性[11],有望引起持续的BSI(PBSI)
[3]以及PBSI预测死亡率的持续时间[2,12-14]。 MRSA很少在
PBSI [3],强调耐受性是患者结局不良的重要原因。抗生素耐受性是一种复杂的
特质与阻力不同,并且在体内的研究有重大障碍。
了解临床环境中最重要的机制的进展。在此提案中,我们提出了
创新的基因筛查方法克服这些障碍。发生在MRSA-PBSI的情节中
可以将不同的患者视为微生物进化中天然实验的生物学重复。
随着细菌种群的大小由于抗生素和免疫压迫而崩溃,耐受突变体
将变得丰富。以超过机会的速率独立于同一遗传基因座出现的突变
一个人在生物学上有意义。在初步研究中,使用这种“基因型优先”方法,我们找到了证据
对于两种遗传途径的宿主进化,与抗生素耐受性密切相关。我们的中心假设是
在治疗MRSA-PBSI期间出现的突变体含有抗生素和免疫的遗传适应
宽容。我们建议通过以下特定目的来识别和表征这些途径:
AIM 1。确定MRSA-PBSI期间哪些基因与抗生素耐受性和
能量不平衡。耐受机制通常涉及代谢中的扰动,导致“低能量”
指出导致抗生素靶标的转移缓慢的情况[4,5]。这种扰动可能会通过多种
能量失调的冗余途径。或者,体内条件可能会强调特定的
细胞的代谢网络中的节点和某些途径可能主导抗生素耐受性景观。我们
将利用我们的遗传筛选方法识别抗生素耐受性突变体并确定哪些基因
在MRSA-PBSI期间演变的与抗生素耐受性和能量失衡有关。
AIM 2。确定由于宿主 - 病原体 - 药物的MRSA-PBSI期间TCA周期缺陷是否演变
相互作用。 HARMSH环境可以诱导抗生素耐受性,而领先的模型是宿主免疫
吞噬细胞衍生的活性氧形式的压力诱导金黄色葡萄球菌进入耐药态
通过减少三核酸(TCA)周期的通量[6]。在我们的初步数据中,我们确定了TCA周期
在MRSA-PBSI期间演变的突变体。如果这些突变体通过在
吞噬体,它们将在此设置中显示出健身优势。我们将利用这些突变体测试此模型
直接,通过执行我们感染吞噬细胞并测量存活和药物耐受性的实验。
这项研究对于理解持续MRSA感染的基本生物学和
体内抗生素耐受性的机制。此信息将为新疗法的设计提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATTHEW J CULYBA其他文献
MATTHEW J CULYBA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATTHEW J CULYBA', 18)}}的其他基金
Determining the mechanisms that cause persistent MRSA bloodstream infection by tracking in-host evolution
通过追踪宿主进化来确定导致持续性 MRSA 血流感染的机制
- 批准号:
10352493 - 财政年份:2022
- 资助金额:
$ 19.88万 - 项目类别:
Mechanism and Consequences of Temporal Gene Expression for SOS-induced Mutagenesis
SOS 诱导突变的时间基因表达的机制和后果
- 批准号:
10453969 - 财政年份:2017
- 资助金额:
$ 19.88万 - 项目类别:
Mechanism and Consequences of Temporal Gene Expression for SOS-induced Mutagenesis
SOS 诱导突变的时间基因表达的机制和后果
- 批准号:
9384879 - 财政年份:2017
- 资助金额:
$ 19.88万 - 项目类别:
相似国自然基金
结合态抗生素在水产品加工过程中的消解机制与产物毒性解析
- 批准号:32302247
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Fe-N-BC/PMS体系的自由基与非自由基协同降解地下水中磺胺类抗生素的机制研究
- 批准号:42377036
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于高通量测序和培养组学的伴侣动物-人抗生素抗性基因分布特征及传播研究
- 批准号:82373646
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
微藻-细菌协同降解抗生素及其共适应机制
- 批准号:42377367
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
多环芳烃影响大肠杆菌抗生素耐药性进化的分子机制
- 批准号:32301424
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of Targeted Antipseudomonal Bactericidal Prodrugs
靶向抗假单胞菌杀菌前药的开发
- 批准号:
10678074 - 财政年份:2023
- 资助金额:
$ 19.88万 - 项目类别:
Systems Epigenomics of Persistent Bloodstream Infection
持续性血流感染的系统表观基因组学
- 批准号:
10551703 - 财政年份:2023
- 资助金额:
$ 19.88万 - 项目类别:
An Integrated Catheter Dressing for Early Detection of Catheter-related Bloodstream Infections
用于早期检测导管相关血流感染的集成导管敷料
- 批准号:
10647072 - 财政年份:2023
- 资助金额:
$ 19.88万 - 项目类别:
Epigenomic Mechanisms & Contextual Immunity in Persistent MRSA Bacteremia
表观基因组机制
- 批准号:
10551708 - 财政年份:2023
- 资助金额:
$ 19.88万 - 项目类别: