Redox and Protein Homeostasis in Arsenic Tumorigenicity
砷致瘤性中的氧化还原和蛋白质稳态
基本信息
- 批准号:10613495
- 负责人:
- 金额:$ 29.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-09 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:ATP HydrolysisATP phosphohydrolaseAgarAirAntioxidantsArsenicAutophagosomeBindingCRISPR/Cas technologyCUL3 geneCancer ModelCarcinogenicity TestsCarcinogensCell LineCellsCellular StressChronicClassificationClinicalClinical TrialsComplexCytoprotectionDataDeveloping CountriesDisabled PersonsDoseEnsureEnvironmentEnvironmental CarcinogensEpithelial CellsEventExposure toFeedbackGenesGenetic TranscriptionGrowthHealthHomeostasisHumanIn VitroInfectionIsogenic transplantationLaboratoriesLettersLungLung NeoplasmsMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of lungMalignant neoplasm of urinary bladderMediatingModelingMolecularMolecular ChaperonesMusMutagenesisMutateMutationNude MiceOxidation-ReductionOxidative StressPersonsPlayProceduresProteinsRBX1 geneReportingResponse ElementsRiskRoleSkin CancerSoilStressTestingTherapeuticTransformed Cell LineTumor TissueTumorigenicityUp-RegulationXenograft Modelbiological adaptation to stresscarcinogenesiscontaminated waterin vivoinhibitormetaplastic cell transformationmouse modelmulticatalytic endopeptidase complexnovelpre-clinicalpreventpromoterproteostasisproteotoxicityresponsesegregationsubcutaneoustumorubiquitin-protein ligase
项目摘要
PROJECT SUMMARY
Arsenic is classified as a human carcinogen that has been associated with increased risk of developing cancers
of the lung, skin, and bladder. However, the mechanism of arsenic tumorgenicity remains incompletely
described. Arsenic has been shown to upregulate NRF2, the master regulator of the cellular stress response in
vitro and in vivo. Under non-stress conditions, the basal level of NRF2 is kept low by KEAP1-CUL3-RBX1-
mediated ubiquitylation and subsequent 26S proteasomal degradation. During canonical NRF2 activation
KEAP1-Cys151 is modified, preventing NRF2 ubiquitylation and increasing the level of NRF2 and its downstream
genes to protect cells from environmental insults. Once cellular homeostasis is restored, NRF2 returns to low
basal level, ensuring transient NRF2 upregulation. However, we discovered arsenic activates NRF2 by a non-
canonical mechanism. Environmentally relevant doses of arsenic block autophagosome maturation, which leads
to p62-mediated sequestration of KEAP1 into autophagosomes, blocking NRF2 ubiquitylation and degradation.
This leads to sustained hyperexpression of NRF2 and its antioxidant response element (ARE) containing target
genes, conferring a cellular survival advantage. Interestingly, our novel unpublished results demonstrate that the
ATPase associated with various cellular activities (AAA+) chaperone, p97, contains a functional ARE in its
promoter. Functionally, p97 uses the binding and hydrolysis of ATP to generate a force to segregate ubiquitylated
proteins from other biomolecules, often for subsequent degradation by the proteasome. We have demonstrated
that p97 negatively regulates NRF2 by extracting ubiquitinated NRF2 from the KEAP1-CUL3-RBX1 E3 ubiquitin
ligase complex that facilitates NRF2 degradation by proteasome. This segregase activity of p97 plays a
prominent role in protein homeostasis – proteostasis. Our finding of p97 as a novel NRF2 target gene indicates
that NRF2 controls not only oxidative stress but also proteotoxic stress. Like NRF2, hyperexpression of p97 in
human tumors has been reported and p97 is considered a target for treating cancer. We also observed that the
protein levels of both NRF2 and p97 were increased in arsenic transformed cell lines and in human lung tumor
tissues (preliminary data). Based on these findings, we propose the following model: Under basal conditions,
low level expression of NRF2 and p97 is maintained through the NRF2-p97-NRF2 negative feedback loop.
However, during chronic arsenic exposure, this NRF2-p97-NRF2 negative feed bask loop is disabled since NRF2
is no longer ubiquitylated, resulting in sustained upregulation of both NRF2 and p97. Thus, arsenic increases
both the oxidative stress response and the proteotoxic stress response. We will test our hypothesis that
sustained NRF2 and NRF2-mediated p97 upregulation in response to environmental arsenic exposure
provides a survival advantage that enables arsenic-exposed cells to survive both oxidative and
proteotoxic stress and to accumulate sufficient molecular events that drive malignant transformation.
项目摘要
砷被列为人类致癌物质,与癌症风险增加有关
肺皮肤和膀胱然而,砷致瘤的机制仍不完全
介绍了砷已被证明上调NRF 2,NRF 2是细胞应激反应的主要调节因子,
体外和体内。在非胁迫条件下,NRF 2的基础水平被KEAP 1-CUL 3-RBX 1-BX 1-B
介导的泛素化和随后的26 S蛋白酶体降解。在典型NRF 2激活期间
KEAP 1-Cys 151被修饰,阻止NRF 2泛素化并增加NRF 2及其下游的水平。
保护细胞免受环境侵害的基因。一旦细胞内稳态恢复,NRF 2恢复到低水平,
基础水平,确保瞬时NRF 2上调。然而,我们发现砷激活NRF 2的非-
规范机制环境相关剂量的砷阻断自噬体成熟,
p62介导的KEAP 1进入自噬体的隔离,阻断NRF 2泛素化和降解。
这导致NRF 2及其含有靶点的抗氧化反应元件(ARE)的持续高表达。
基因,赋予细胞生存优势。有趣的是,我们新的未发表的结果表明,
与各种细胞活性相关的ATP酶(AAA+)伴侣蛋白,p97,在其分子中含有功能性ARE。
启动子在功能上,p97利用ATP的结合和水解来产生分离泛素化的力。
蛋白质从其他生物分子中分离出来,通常随后被蛋白酶体降解。我们已经证明
p97通过从KEAP 1-CUL 3-RBX 1 E3泛素中提取泛素化的NRF 2来负调控NRF 2
连接酶复合物,促进蛋白酶体降解NRF 2。p97的这种分离酶活性起着重要作用。
在蛋白质稳态中的重要作用。我们发现p97是一个新的NRF 2靶基因,这表明
NRF 2不仅控制氧化应激,还控制蛋白毒性应激。与NRF 2一样,p97在
已经报道了人肿瘤,并且p97被认为是治疗癌症的靶点。我们还观察到,
在砷转化细胞系和人肺肿瘤中,NRF 2和p97蛋白水平均升高
组织(初步数据)。基于这些发现,我们提出了以下模型:在基础条件下,
通过NRF 2-p97-NRF 2负反馈环维持NRF 2和p97的低水平表达。
然而,在慢性砷暴露期间,由于NRF 2-p97-NRF 2负反馈晒环被禁用,
不再被泛素化,导致NRF 2和p97的持续上调。因此,砷增加
氧化应激反应和蛋白毒性应激反应。我们将测试我们的假设,
环境砷暴露后NRF 2和NRF 2介导的p97持续上调
提供了一种生存优势,使砷暴露的细胞能够在氧化和
蛋白毒性应激和积累足够的分子事件,驱动恶性转化。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eli Chapman其他文献
Eli Chapman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eli Chapman', 18)}}的其他基金
Redox and Protein Homeostasis in Arsenic Tumorigenicity
砷致瘤性中的氧化还原和蛋白质稳态
- 批准号:
10213029 - 财政年份:2020
- 资助金额:
$ 29.9万 - 项目类别:
Redox and Protein Homeostasis in Arsenic Tumorigenicity
砷致瘤性中的氧化还原和蛋白质稳态
- 批准号:
10396572 - 财政年份:2020
- 资助金额:
$ 29.9万 - 项目类别:
Stress response, p97, and Nrf2 in arsenic-mediated toxicity
砷介导的毒性中的应激反应、p97 和 Nrf2
- 批准号:
9186452 - 财政年份:2014
- 资助金额:
$ 29.9万 - 项目类别:
Stress response, p97, and Nrf2 in arsenic-mediated toxicity
砷介导的毒性中的应激反应、p97 和 Nrf2
- 批准号:
8795176 - 财政年份:2014
- 资助金额:
$ 29.9万 - 项目类别:
Stress response, p97, and Nrf2 in arsenic-mediated toxicity
砷介导的毒性中的应激反应、p97 和 Nrf2
- 批准号:
8654444 - 财政年份:2014
- 资助金额:
$ 29.9万 - 项目类别:
Stress response, p97, and Nrf2 in arsenic-mediated toxicity
砷介导的毒性中的应激反应、p97 和 Nrf2
- 批准号:
8957408 - 财政年份:2014
- 资助金额:
$ 29.9万 - 项目类别:
Using chemical genetics to explore GroEL function
利用化学遗传学探索 GroEL 功能
- 批准号:
6846577 - 财政年份:2004
- 资助金额:
$ 29.9万 - 项目类别:
Using chemical genetics to explore GroEL function
利用化学遗传学探索 GroEL 功能
- 批准号:
7008527 - 财政年份:2004
- 资助金额:
$ 29.9万 - 项目类别:
Using chemical genetics to explore GroEL function
利用化学遗传学探索 GroEL 功能
- 批准号:
6739344 - 财政年份:2004
- 资助金额:
$ 29.9万 - 项目类别:
Using chemical genetics to explore GroEL function
利用化学遗传学探索 GroEL 功能
- 批准号:
6985881 - 财政年份:2004
- 资助金额:
$ 29.9万 - 项目类别: