Deep Learning Image Enhancement for Point of Care Ultrasound

用于床旁超声的深度学习图像增强

基本信息

  • 批准号:
    10614918
  • 负责人:
  • 金额:
    $ 3.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-03 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

Project Summary Ultrasound has many clinical applications due to it’s non-invasive, non-ionizing, and real-time imaging properties. However, ultrasound still relies heavily on operator skills for image acquisition and interpretation. Operator skill is especially challenged in overweight and obese patient populations where imaging artifacts such as acoustic clutter are more prominent and decrease anatomical conspicuity. To decrease the interpretation burden faced by operators, we aim to develop a deep learning framework for real-time acoustic clutter artifact suppression. We generate preliminary in silico training data using a configurable cloud-compute tool that scales to an 8000 CPU cluster. This tool is ideal for deep learning methods as it significantly speeds up the turnaround time for simulating unique ultrasound acquisition configurations enabling data generation in days as opposed to months. In this project, we will open-source our cloud-compute simulations tools, improve our current in silico data model of acoustic clutter by incorporating human abdominal wall tissue information from medical CT scans, and assess our clutter correction model’s performance on in vivo data. To translate our model’s results for medical provider interpretation, image post-processing is necessary. In our recently published work, MimickNet, we use deep learning methods to successfully approximate post-processing algorithms found on some of the best clinical-grade ultrasound scanners. We propose extending MimickNet to incorporate post-processing approximations for anatomy-specific use cases such as cardiac and vascular imaging. This will provide more off-the-shelf tooling for researchers to translate their algorithmic research into image forms familiar to providers, thus easing clinical translation. Lastly, portable ultrasound hardware has significantly decreased in cost, enabling the widespread use of mobile point-of-care ultrasound (POCUS). Since many consumer devices contain hardware accelerators specific for deep learning applications, there is an opportunity to correct ultrasound artifacts in real-time, even while constrained to mobile hardware. Our preliminary data show that beamforming operations and MimickNet can run at > 100 frames-per-second on an NVIDIA P100 GPU. We propose developing a framework to transfer our image processing pipeline completely onto mobile hardware accelerators. This work will enable translating novel image processing algorithms as easy as downloading software. Our work in developing a deep learning framework for POCUS systems covers the full image reconstruction pipeline from simulated data to producing a clinical-grade image familiar to providers. This framework will provide a rapid translational path for improving ultrasound imaging quality on cheap and widely available mobile hardware.
项目摘要 超声具有无创、非电离、实时成像等优点,具有广泛的临床应用前景 属性。然而,超声波仍然在很大程度上依赖操作员的技能来获取和解释图像。 在超重和肥胖的患者群体中,操作技能尤其受到挑战,因为在这些人群中,成像伪影 例如声学杂波更加突出,并降低了解剖的显着性。以减少 面对操作员面临的口译负担,我们的目标是开发一个实时深度学习框架 声杂波伪影抑制。 我们使用可配置的云计算工具生成初步的远程培训数据,该工具可扩展到 8000个CPU的集群。此工具是深度学习方法的理想选择,因为它显著加快了 模拟独特的超声采集配置的周转时间,可在数天内生成数据 而不是几个月。在这个项目中,我们将开源我们的云计算模拟工具,改进我们的 结合人体腹壁组织信息的声杂波电子数据模型研究现状 从医学CT扫描,并评估我们的杂波校正模型的性能在活体数据。 为了将我们的模型结果转换为医疗提供者的解释,图像后处理是 这是必要的。在我们最近出版的作品MimickNet中,我们使用深度学习方法成功地 在一些最好的临床级超声扫描仪上找到的近似后处理算法。我们 建议扩展MimickNet以包含用于特定解剖的后处理近似 心脏和血管成像等病例。这将为研究人员提供更多现成的工具 将他们的算法研究转换为提供商熟悉的图像形式,从而简化临床翻译。 最后,便携式超声硬件显著降低了成本,使广泛的 使用移动医疗点超声波(Pocus)。由于许多消费设备包含硬件 特定于深度学习应用的加速器,有机会在 实时,即使受限于移动硬件也是如此。我们的初步数据显示波束形成 操作和MimickNet可以在NVIDIA P100图形处理器上以每秒100帧的速度运行。我们建议 开发一个框架,将我们的图像处理流水线完全转移到移动硬件上 加速器。这项工作将使翻译新的图像处理算法变得像下载一样容易 软件。 我们为Pocus系统开发深度学习框架的工作涵盖了整个图像。 从模拟数据到产生提供者熟悉的临床级别图像的重建流水线。这 框架将提供一条快速转换路径,以廉价和 随处可见的移动硬件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ouwen Huang其他文献

Ouwen Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ouwen Huang', 18)}}的其他基金

Deep Learning Image Enhancement for Point of Care Ultrasound
用于床旁超声的深度学习图像增强
  • 批准号:
    10312492
  • 财政年份:
    2021
  • 资助金额:
    $ 3.91万
  • 项目类别:

相似海外基金

Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
  • 批准号:
    10078324
  • 财政年份:
    2023
  • 资助金额:
    $ 3.91万
  • 项目类别:
    BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
  • 批准号:
    2308300
  • 财政年份:
    2023
  • 资助金额:
    $ 3.91万
  • 项目类别:
    Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
  • 批准号:
    10033989
  • 财政年份:
    2023
  • 资助金额:
    $ 3.91万
  • 项目类别:
    Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
  • 批准号:
    23K16913
  • 财政年份:
    2023
  • 资助金额:
    $ 3.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
  • 批准号:
    10582051
  • 财政年份:
    2023
  • 资助金额:
    $ 3.91万
  • 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
  • 批准号:
    10602958
  • 财政年份:
    2023
  • 资助金额:
    $ 3.91万
  • 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
  • 批准号:
    2889921
  • 财政年份:
    2023
  • 资助金额:
    $ 3.91万
  • 项目类别:
    Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2343847
  • 财政年份:
    2023
  • 资助金额:
    $ 3.91万
  • 项目类别:
    Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
  • 批准号:
    DGECR-2022-00019
  • 财政年份:
    2022
  • 资助金额:
    $ 3.91万
  • 项目类别:
    Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2141275
  • 财政年份:
    2022
  • 资助金额:
    $ 3.91万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了