DNA 3.0: Development of a novel, efficient and cost-effective enzymatic process for synthesis of DNA oligonucleotides

DNA 3.0:开发一种新颖、高效且​​具有成本效益的 DNA 寡核苷酸合成酶法

基本信息

  • 批准号:
    10614066
  • 负责人:
  • 金额:
    $ 98.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-15 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract Since the birth of biotechnology in the 1980s, efficient nucleic acid synthesis has been a key driver of biological discovery and bio-product development, culminating in the recent emergence of the ‘synthetic biology’ field and rapid development of nucleic acid therapeutics. Sequence-specific RNA and DNA manufacturing is having an especially strong impact in healthcare, where FDA approval of the first oligonucleotide-based therapeutics in 2018 quickly led to many hundreds of similar drugs entering clinical trials. Despite these positive developments, new DNA and RNA synthesis technologies are urgently needed to meet the rapidly rising demand for clinical-grade oligonucleotides, because the current chemical synthesis strategies are costly, difficult to scale, inefficient and limited to molecules of 200 nucleotides or less in length. In the past decade, enzymatic oligonucleotide synthesis (EOS) strategies have been explored and developed for this purpose. In a Phase I feasibility project, Primordial Genetics Inc. demonstrated the use of novel template- independent DNA polymerases (TIDPs) for controlled addition of natural, unmodified nucleotides to a growing DNA strand in a simple process that does not require a chemical deblocking step. This innovation has the potential to enable a robust, inexpensive, flexible, environmentally friendly and easily scalable enzymatic route to manufacturing DNA and RNA used in therapeutics, vaccines, diagnostics and R&D products. In this Phase II Small Business Innovation Research (SBIR) project, Primordial Genetics proposes to continue the Phase I work to optimize the already discovered TIDPs to enable a high rate (99%) of single nucleotide addition in each synthesis cycle that is needed for an industrial EOS process. The company’s genetic improvement and screening platform, specifically the Function Generator™ technology, will be applied together with the artificial intelligence and machine learning capabilities of our computational biology collaborator Koliber Biosciences to improve these enzymes to the desired level of efficiency. A prototype EOS process will be developed using the optimized enzymes acting on oligonucleotides immobilized on a solid support. The prototype EOS process has the potential to enable more efficient DNA and RNA synthesis and remove the manufacturing bottlenecks that are currently holding back the development of nucleic acid medicines. Over time, we will adapt the TIDPs to allow synthesis of all modified nucleotides currently being incorporated into DNA- and RNA-based therapeutics, vaccines, as well as reagents for diagnostics, R&D and DNA-based information storage.
项目总结/摘要 自20世纪80年代生物技术诞生以来,有效的核酸合成一直是关键 生物发现和生物产品开发的驱动力,在最近出现的 “合成生物学”领域和核酸治疗学的快速发展。序列特异 RNA和DNA制造在医疗保健领域的影响尤其强烈,FDA 2018年批准的第一批基于阿替西汀的治疗药物很快导致了数百种 类似药物进入临床试验。尽管有这些积极的发展,新的DNA和RNA 迫切需要合成技术来满足对临床级药物的快速增长的需求。 寡核苷酸,因为目前的化学合成策略是昂贵的,难以规模化, 效率低且限于长度为200个核苷酸或更少的分子。在过去的十年里,酶 为此目的,已经探索和开发了寡核苷酸合成(EOS)策略。 在第一阶段的可行性项目中,原始遗传学公司。展示了新模板的使用- 独立DNA聚合酶(TIDP),用于控制添加天然、未修饰的核苷酸, 在一个简单的过程中生长的DNA链,不需要化学解封闭步骤。这 创新有可能使一个强大的,廉价的,灵活的,环境友好的, 容易扩展的酶促途径来制造用于治疗剂,疫苗, 诊断和研发产品。 在第二阶段的小企业创新研究(SBIR)项目中,原始遗传学 建议继续第一阶段的工作,以优化已经发现的TIDP, 工业EOS所需的每个合成循环中的单核苷酸添加率(99%) 过程该公司的基因改良和筛选平台,特别是功能 Generator™技术将与人工智能和机器学习一起应用 我们的计算生物学合作者Koliber Biosciences的能力,以改善这些酶 达到所需的效率水平。一个原型EOS过程将开发使用优化的 作用于固定在固体支持物上的寡核苷酸的酶。 原型EOS过程有可能实现更有效的DNA和RNA合成 并消除目前阻碍核技术发展的制造瓶颈, 酸性药物随着时间的推移,我们将调整TIDP,以允许合成所有修饰的核苷酸 目前正被整合到基于DNA和RNA的治疗剂、疫苗以及试剂中 用于诊断、研发和基于DNA的信息存储。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Helge Zieler其他文献

Helge Zieler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Helge Zieler', 18)}}的其他基金

DNA 3.0: Developing novel enzymes for DNA synthesis with deep learning and combinatorial genetics
DNA 3.0:利用深度学习和组合遗传学开发用于 DNA 合成的新型酶
  • 批准号:
    10304760
  • 财政年份:
    2021
  • 资助金额:
    $ 98.38万
  • 项目类别:
DNA 3.0: Developing novel enzymes for DNA synthesis with deep learning and combinatorial genetics
DNA 3.0:利用深度学习和组合遗传学开发用于 DNA 合成的新型酶
  • 批准号:
    10010243
  • 财政年份:
    2020
  • 资助金额:
    $ 98.38万
  • 项目类别:
Development of superior polymerases for next-generation mRNA therapeutic & vaccine manufacturing
开发用于下一代 mRNA 治疗的优质聚合酶
  • 批准号:
    10229603
  • 财政年份:
    2018
  • 资助金额:
    $ 98.38万
  • 项目类别:
Development of superior polymerases for next-generation mRNA therapeutic & vaccine manufacturing
开发用于下一代 mRNA 治疗的优质聚合酶
  • 批准号:
    10082063
  • 财政年份:
    2018
  • 资助金额:
    $ 98.38万
  • 项目类别:

相似国自然基金

基于Teach-back药学科普模式的慢阻肺患者吸入用药依从性及疗效研究
  • 批准号:
    2024KP61
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于Quench-Back保护的超导螺线管磁体失超过程数值模拟研究
  • 批准号:
    51307073
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 98.38万
  • 项目类别:
    Continuing Grant
One-step reconstruction of plastic waste back to its constituent monomers (ONESTEP)
将塑料废物一步重建回其组成单体(ONESTEP)
  • 批准号:
    EP/Y003934/1
  • 财政年份:
    2024
  • 资助金额:
    $ 98.38万
  • 项目类别:
    Research Grant
On the origin of very massive back holes
关于巨大背洞的起源
  • 批准号:
    DP240101786
  • 财政年份:
    2024
  • 资助金额:
    $ 98.38万
  • 项目类别:
    Discovery Projects
Back to our roots: Re-activating Indigenous biocultural conservation
回到我们的根源:重新激活本土生物文化保护
  • 批准号:
    FT230100595
  • 财政年份:
    2024
  • 资助金额:
    $ 98.38万
  • 项目类别:
    ARC Future Fellowships
Collaborative Research: FuSe: Indium selenides based back end of line neuromorphic accelerators
合作研究:FuSe:基于硒化铟的后端神经形态加速器
  • 批准号:
    2328741
  • 财政年份:
    2023
  • 资助金额:
    $ 98.38万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSFGEO-NERC: MEZCAL: Methods for Extending the horiZontal Coverage of the Amoc Latitudinally and back in time (MEZCAL)
合作研究:NSFGEO-NERC:MEZCAL:扩展 Amoc 纬度和时间回水平覆盖范围的方法 (MEZCAL)
  • 批准号:
    2409764
  • 财政年份:
    2023
  • 资助金额:
    $ 98.38万
  • 项目类别:
    Standard Grant
Relationships Between Pain-Related Psychological Factors, Gait Quality, and Attention in Chronic Low Back Pain
慢性腰痛中疼痛相关心理因素、步态质量和注意力之间的关系
  • 批准号:
    10679189
  • 财政年份:
    2023
  • 资助金额:
    $ 98.38万
  • 项目类别:
The Role of VEGF in the Development of Low Back Pain Following IVD Injury
VEGF 在 IVD 损伤后腰痛发展中的作用
  • 批准号:
    10668079
  • 财政年份:
    2023
  • 资助金额:
    $ 98.38万
  • 项目类别:
Psilocybin and Affective Function in Chronic Lower Back Pain and Depression
裸盖菇素与慢性腰痛和抑郁症的情感功能
  • 批准号:
    10626449
  • 财政年份:
    2023
  • 资助金额:
    $ 98.38万
  • 项目类别:
Brain Mechanisms of Chronic Low-Back Pain: Specificity and Effects of Aging and Sex
慢性腰痛的脑机制:衰老和性别的特异性和影响
  • 批准号:
    10657958
  • 财政年份:
    2023
  • 资助金额:
    $ 98.38万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了