Drosophila as a model to study modifiers of Cystic Fibrosis
果蝇作为研究囊性纤维化修饰因子的模型
基本信息
- 批准号:10593250
- 负责人:
- 金额:$ 0.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-03 至 2025-03-02
- 项目状态:未结题
- 来源:
- 关键词:AffectAnimal ModelBacteriaBiological AssayCandidate Disease GeneCell LineCellsChloride ChannelsChloridesClinicalCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorDehydrationDiseaseDisease ProgressionDrosophila genusEnvironmental Risk FactorEpithelialEpithelial CellsEuropeanGenesGeneticGenetic DiseasesGenetic ScreeningGerm-FreeGoalsHumanIntestinal MotilityIntestinesIon ChannelLongevityLungMessenger RNAMicroRNAsModelingMucinsMucous body substanceMutationNewborn InfantOrganOrthologous GeneOther GeneticsOutcomePancreasPathologyPatientsPersonsPhenotypeRegulationRegulator GenesRespiratory SystemSignal PathwaySinusSodiumSurfaceSymptomsTherapeuticTimeToxic effectUnited StatesUp-RegulationWaterWorkclinical phenotypeclinically relevantcohortcostcystic fibrosis patientsdifferential expressiondisease phenotypedrug actiondysbiosisepithelial Na+ channelflygastrointestinal epitheliuminhibitorinsightknock-downloss of function mutationmicrobiomemolecular targeted therapiesmutantnew therapeutic targetoverexpressionrecessive genetic traitreproductive organsensortherapeutic targettranscription factor
项目摘要
Summary/abstract
Cystic Fibrosis (CF) is genetic disorder that effects approximately 30,000 people in the United states and more
then 70,000 worldwide. CF is caused by mutations in the epithelial chloride channel CF transmembrane
conductance regulator (CFTR) gene. In CF, loss-of-function mutations in CFTR, reduces chloride efflux from
cells, and elevates the activity of the epithelial sodium channel (ENaC) through a mechanism that is not fully
understood. This results in an increase sodium and water reabsorption, which ultimately leads to dehydration of
the epithelial surface and reduction in mucus transport in multiple mucin-producing organs, such as the lungs,
sinuses, intestine, pancreas, and reproductive organs. CF patients develop clinical symptoms in all these mucus-
producing organs. In particular, most CF patients have shortened lifespans because of loss of CFTR in the
respiratory tract, but also develop gut phenotypes early in the progression of the disease. These gut phenotypes
are less studied than the lung phenotypes of CF but still significantly impact CF patients lives. While CF is caused
by many different mutations in CFTR, the differences in CFTR function cannot explain the differences in patient
symptoms. This indicates that many of the clinical phenotypes of CF are influenced by genetic modifiers and/or
environmental factors. These genetic modifiers and environmental factors could be additional targets to develop
treatments for CF that could be used to treat all patients regardless of the mutation they harbor. However, many
of the potential genetic modifiers of CF are not well studied and the mechanism by which they modify CF
phenotypes is unknown.
Our lab has recently identified a Drosophila ortholog of the CFTR gene and established a CF model in
the fly gut epithelium. In addition to observing CF phenotypes in the gut epithelium of CFTR mutant flies, we
uncovered a micro RNA, mir263a, as a negative regulator of ENaC activity. Interestingly, the expression of
mir263a is decreased in CFTR mutant flies, suggesting that that the regulation of ENAC by CFTR is regulated
in part by mir263a. Here, I propose to further characterize the pathology of the fly mutant model including
examining how bacteria can modulate disease phenotypes in this model. I will then use the fly CF model to gain
new insight into ENaC, a known modifier of the CF phenotype. Finally, as the short lifespan, low cost, and genetic
tractability of the fly makes it an ideal model organism to perform genetic screens, I propose to identify new
potential genetic modifiers of CF. Altogether this work will establish Drosophila as a useful model to study CF
and potentially provide new molecular targets for treatment of the disease.
摘要/摘要
囊性纤维化是一种遗传性疾病,在美国大约有30,000人或更多人受到影响
然后在全球范围内达到7万。Cf是由上皮氯通道Cf跨膜突变引起的
电导调节因子(CFTR)基因。在CF中,CFTR功能丧失突变,减少氯离子外流
并通过一种不完全的机制提高上皮钠通道(ENaC)的活性
明白了。这会导致钠和水的重吸收增加,最终导致脱水
在多个产生粘蛋白的器官,如肺,上皮表面和粘液运输的减少,
鼻窦、肠道、胰腺和生殖器官。Cf患者在所有这些粘液中出现临床症状-
产生器官。特别是,大多数CF患者的寿命都缩短了,这是因为在
呼吸道,但也会在疾病进展的早期形成肠道表型。这些肠道表型
与CF的肺表型相比研究较少,但仍对CF患者的生活有显著影响。而引起慢性阻塞性肺疾病
由于cftr有许多不同的突变,cftr功能的差异不能解释患者之间的差异
症状。这表明许多CF的临床表型受到遗传修饰物和/或
环境因素。这些遗传修饰物和环境因素可能成为开发的额外目标。
可用于治疗所有患者的CF治疗方法,无论他们携带的突变是什么。然而,许多人
其中潜在的遗传修饰剂尚未得到很好的研究,以及它们对纤维的修饰机理
表型尚不清楚。
我们的实验室最近发现了一个果蝇CFTR基因的直系同源基因,并在
苍蝇肠道上皮。除了观察cftr突变果蝇肠道上皮中的cf表型外,我们还
发现了一个微小的RNA,mir263a,作为ENaC活性的负调节因子。有趣的是,
在cftr突变果蝇中,mir263a的表达减少,这表明cftr对ENAC的调控是受调控的
部分是由米尔263a造成的。在这里,我建议进一步描述苍蝇突变模型的病理学特征,包括
在这个模型中,研究细菌如何调节疾病表型。然后我将使用Fly CF模型来获得
对ENaC的新见解,ENaC是一种已知的CF表型修饰物。最后,由于寿命短,成本低,而且基因
苍蝇的可驯性使它成为进行遗传筛选的理想模式生物,我建议识别新的
潜在的遗传修饰因子。总之,这项工作将建立果蝇作为研究CF的有用模型
并有可能为该病的治疗提供新的分子靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizabeth Lane其他文献
Elizabeth Lane的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizabeth Lane', 18)}}的其他基金
Drosophila as a model to study modifiers of Cystic Fibrosis
果蝇作为研究囊性纤维化修饰因子的模型
- 批准号:
10550126 - 财政年份:2022
- 资助金额:
$ 0.25万 - 项目类别:
Drosophila as a model to study modifiers of Cystic Fibrosis
果蝇作为研究囊性纤维化修饰因子的模型
- 批准号:
10386551 - 财政年份:2022
- 资助金额:
$ 0.25万 - 项目类别:
Regulation of de novo lipogenesis through BAD-dependent glucose signaling
通过 BAD 依赖性葡萄糖信号传导调节从头脂肪生成
- 批准号:
9244778 - 财政年份:2015
- 资助金额:
$ 0.25万 - 项目类别:
Regulation of de novo lipogenesis through BAD-dependent glucose signaling
通过 BAD 依赖性葡萄糖信号传导调节从头脂肪生成
- 批准号:
8897058 - 财政年份:2015
- 资助金额:
$ 0.25万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




