Bioethical Considerations for Building, Evaluating, and Implementing Artificial Intelligence in Perinatal Mood and Anxiety Disorders
构建、评估和实施人工智能治疗围产期情绪和焦虑症的生物伦理考量
基本信息
- 批准号:10593284
- 负责人:
- 金额:$ 13.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-21 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcademiaAcademic Medical CentersAddressAnxiety DisordersArtificial IntelligenceAttentionAttitudeBioethicsCase StudyCause of DeathCellular PhoneChildCollaborationsComplexConceptionsDataData SourcesDevelopmentDevicesDiscipline of obstetricsEarly DiagnosisEarly treatmentElectronic Health RecordEthicsEthnic OriginExpert SystemsExplosionFeedbackFemale of child bearing ageFetusFosteringFutureFuture GenerationsHealthHealth TechnologyIndustryInformaticsInterventionInterviewInvestigationIrisKnowledgeLeadershipLeftLinkMaternal HealthMedicineMental DepressionMental HealthMental disordersMentorsMethodsModelingMood DisordersMothersNewborn InfantOutputParentsPathway interactionsPatient EducationPatientsPeer ReviewPerinatalPerinatal CarePhasePostpartum DepressionPostpartum PeriodPostpartum WomenPregnancyPreventionPsychiatryPublishingQualitative ResearchRaceResearchResearch PersonnelResourcesReview LiteratureRiskSamplingSmall Business Technology Transfer ResearchStructureSubgroupSuicideSurvey MethodologySurveysTechnologyTherapeutic InterventionTimeTrainingTrustWomanWorkalgorithmic biasbasedashboarddata sharingdesigndigital healthexperiencehealth datamodel buildingmultidisciplinaryparent grantpatient engagementpediatricianperinatal mental healthpreferenceprototyperesponseroutine screeningshared decision makinguser centered design
项目摘要
PROJECT SUMMARY
Postpartum depression (PPD) is a common, yet treatable illness if detected early, but it can also
have deleterious effects to the mother and child if left untreated. Routine screening for PPD is
considered best practice but does not consistently occur due to time and resource constraints.
As a result, therapeutic interventions are initiated late and many PPD cases go undetected
altogether. Artificial intelligence (AI) models can bridge the PPD identification gap and have
been shown to proactively, accurately identify women with an elevated risk for PPD. Iris OB
Health, digital health startup company, has built a predictive AI model for PPD. The Iris team is
developing an interface that presents our AI model to patients and clinicians to facilitate shared
decision-making about interventions to decrease risk. Through this work, we are recognizing the
need to better understand the bioethical implications of patient-facing AI. Bioethics research in
AI has focused on presenting model output and fostering trust in AI among clinicians. However,
important ethical questions from the patient perspective remain unanswered. Specifically, it is
unclear if patients are informed about or approve of their data being utilized for model building
purposes. As patient engagement and shared decision-making continue to rise in importance, it
is likely that AI output will also be presented to patients. PPD presents a complex bioethical
case for studying patient-facing AI because, in pregnancy, the autonomy, harms, and benefits
afforded to the perinatal patient, newborn/ fetus, and partner must be weighed simultaneously.
Therefore, this supplement will focus on developing concrete guidance for creating and
implementing patient-facing AI while upholding ethical principles to utilize patient data
sensitively and equitably, using PPD as a use case. The specific aims are to: 1) triangulate
perspectives for transparent, ethical, and equitable use of patient data in AI for PPD from
diverse stakeholders through semi-structured interviews, and 2) evaluate knowledge, attitudes,
and preferences related to the utilization of AI in PPD among women of child-bearing age via a
nation-wide survey. To accomplish these aims, we will leverage our multidisciplinary team from
the parent grant and include new investigators who have collective expertise in obstetrics,
perinatal psychiatry, AI development, informatics, qualitative research, survey methods, and
user-centered design. Given the explosion of bioethical questions related to AI but the lack of
attention paid to patient-facing AI, this project fills an important gap in advancing bioethical AI
research. This work will both inform future AI work in other mental health domains and be
directly incorporated into Phase II development activities by Iris OB Health.
项目摘要
产后抑郁症(PPD)是一种常见的,但如果早期发现可以治疗的疾病,但它也可以
如果不治疗,对母亲和孩子都有有害影响。PPD的常规筛查是
被认为是最佳做法,但由于时间和资源的限制,并不总是这样做。
因此,治疗干预开始较晚,许多PPD病例未被发现
全部人工智能(AI)模型可以弥合PPD识别差距,
已被证明可以主动,准确地识别患有PPD风险升高的女性。虹膜OB
数字健康创业公司Health为PPD建立了一个预测AI模型。Iris团队
开发一个界面,向患者和临床医生展示我们的AI模型,以促进共享
关于降低风险的干预决策。通过这项工作,我们认识到
我们需要更好地理解面向患者的人工智能的生物伦理学意义。生命伦理学研究
人工智能专注于呈现模型输出,并在临床医生中培养对人工智能的信任。然而,在这方面,
从病人的角度来看,重要的伦理问题仍然没有答案。具体来说就是
不清楚患者是否被告知或批准其数据用于模型构建
目的随着患者参与和共同决策的重要性不断上升,
AI输出也可能呈现给患者。PPD提出了一个复杂的生物伦理
研究面向患者的人工智能的案例,因为在怀孕期间,
提供给围产期患者、新生儿/胎儿和伴侣的体重必须同时称重。
因此,本补编将侧重于为创建和
实施面向患者的人工智能,同时坚持利用患者数据的伦理原则
敏感而公平地使用PPD作为用例。具体目标是:1)三角测量
在人工智能中透明、道德和公平地使用患者数据的观点,
不同的利益相关者通过半结构化访谈,和2)评估知识,态度,
以及育龄妇女在PPD中使用AI的偏好,
全国范围的调查。为了实现这些目标,我们将利用我们的多学科团队,
家长补助金,包括新的研究人员谁拥有集体的专业知识,在产科,
围产期精神病学,人工智能的发展,信息学,定性研究,调查方法,
以用户为中心的设计考虑到与人工智能相关的生物伦理问题的爆发,
关注面向患者的AI,该项目填补了推进生物伦理AI的重要空白
research.这项工作将为未来其他心理健康领域的人工智能工作提供信息,
Iris OB Health直接将其纳入II期开发活动。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Recentering responsible and explainable artificial intelligence research on patients: implications in perinatal psychiatry.
- DOI:10.3389/fpsyt.2023.1321265
- 发表时间:2023
- 期刊:
- 影响因子:4.7
- 作者:Turchioe, Meghan Reading;Hermann, Alison;Benda, Natalie C.
- 通讯作者:Benda, Natalie C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael B. Laskoff其他文献
Michael B. Laskoff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael B. Laskoff', 18)}}的其他基金
Risk modeling and shared decision making for postpartum depression
产后抑郁症的风险建模和共同决策
- 批准号:
10252153 - 财政年份:2021
- 资助金额:
$ 13.73万 - 项目类别:
Risk modeling and shared decision making for postpartum depression
产后抑郁症的风险建模和共同决策
- 批准号:
10454932 - 财政年份:2021
- 资助金额:
$ 13.73万 - 项目类别:
相似海外基金
Building a Systems Approach to Community Health and Health Equity for Academic Medical Centers
为学术医疗中心建立社区健康和健康公平的系统方法
- 批准号:
9348616 - 财政年份:2016
- 资助金额:
$ 13.73万 - 项目类别:
Building a Systems Approach to Community Health and Health Equity for Academic Medical Centers
为学术医疗中心建立社区健康和健康公平的系统方法
- 批准号:
9212055 - 财政年份:2016
- 资助金额:
$ 13.73万 - 项目类别:
A CONFERENCE ON THE 'CRISIS' OF ACADEMIC MEDICAL CENTERS
关于学术医疗中心“危机”的会议
- 批准号:
6335654 - 财政年份:2000
- 资助金额:
$ 13.73万 - 项目类别: