Mechanoluminescent nanomaterials for optogenetic neuromodulation
用于光遗传学神经调节的机械发光纳米材料
基本信息
- 批准号:10616188
- 负责人:
- 金额:$ 28.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AchievementAcousticsAddressAnimal TestingAnimalsBRAIN initiativeBiomedical EngineeringBrainCardiovascular systemCationsCell LineCognitiveColloidsComplexComputer ModelsDataDependenceDevelopmentDimensionsDiseaseDissectionElectrospinningEncapsulatedEngineeringExhibitsFiberFluoridesGoalsGrowthHealthHumanHybridsImpairmentIn SituIn VitroInjectableIon ChannelIonsLightLongitudinal StudiesMetalsMethodsMissionMorphologyMotorNanostructuresNervous SystemNeuronsNeurophysiology - biologic functionNeurosciences ResearchPathogenesisPathologicPenetrationPerformancePersonal SatisfactionPhasePhotonsPhysiologicalPhysiologyPolymersPrevalencePreventionProcessPropertyPublic HealthResearchResolutionSensoryShapesSignal TransductionSiteSourceStructureSystemTechnologyTestingTherapeutic InterventionTissuesTransducersUnited States National Institutes of HealthYinaging populationbasebrain tissuecandidate identificationeffective therapyelectrical potentialimprovedin vitro Modelinnovative technologiesinterestlight emissionmagnetic fieldnanocompositenanofibernanomaterialsnanoparticlenanopolymernerve stem cellnervous system disorderneuralneural circuitneuroregulationnew technologynovelnovel therapeutic interventionoptogeneticsparticlepolyvinylidene fluoriderapid growthresponsespatiotemporaltherapeutic developmenttooltransmission processultrasoundvinyl fluoridewirelesszinc sulfide
项目摘要
The exponential surge in the prevalence of neurological diseases/disorders, partly due to the rapid growth in the
aged population, poses a significant challenge to the prevention and treatment of impairments in cognitive,
sensory, and motor functions. However, our insufficient understanding of the mechanisms underlying the
pathogenesis of many neurological diseases delays the development of effective treatments to address this
challenge. Recent advances in optogenetics have provided novel tools to investigate complex neural circuits and
brain functions. Due to a limited penetration depth of photons, however, the invasiveness of light sources into
the brain tissue of live animals to control opto-sensitive ion channels has been one of the major challenges in
optogenetics. In this regard, our goal is to develop a modular mechanoluminescent (ML) material platform for
the non-invasive, acoustic activation of various optogenetic channels for neural modulation with a high
spatiotemporal resolution. This project builds upon our recent technological achievements, in which we
developed various synthesis methods to produce novel structures of inorganic nanomaterials and high
piezoelectric organic nanofiber fragments. Based on our preliminary computational modeling, we hypothesize
that such structures enable greater effective strains that maximize the ML performance of the inorganic-organic
hybrid nanomaterials. This project aims to develop two unique optogenetic modulation systems based on ML
nanomaterials. In Aim 1, we will synthesize zinc sulfide nanoparticles doped with various metal ions to control
emission wavelengths and investigate the effect of nanoparticle morphology and dimension on ML performance.
Furthermore, the interaction between those nanoparticles and encapsulating polymer will be optimized to
maximize the ML performance of nanocomposites. In Aim 2, we will characterize the piezoelectric properties of
electrospun fiber-derived nanofragments and investigate the incorporation of ML nanoparticles into the
piezoelectric nanofragments to boost ML performance. An in vitro model based on a neural stem cell line
transduced with Channelrhodopsin-2 will be utilized to determine the performance of these ML nanomaterials
for neuromodulation. Overall, we anticipate that these studies will provide material bases for ML nanoparticles
injectable into the circulatory system (Aim 1) and for ML nanofragments injectable into a site of interest (Aim 2).
The results of this exploratory project are expected to identify candidates for ML nanomaterial platforms for
further optimization and animal testing in subsequent studies.
神经系统疾病/紊乱的发病率呈指数级激增,部分原因是
老年人口,对预防和治疗认知障碍提出了重大挑战,
感觉和运动功能。然而,我们对这种现象的机制了解不够
许多神经系统疾病的发病机制延迟了有效治疗方法的开发
挑战.光遗传学的最新进展为研究复杂的神经回路提供了新的工具,
大脑功能然而,由于光子的穿透深度有限,光源对光子的侵入性受到限制。
活体动物的脑组织来控制光敏感离子通道一直是
光遗传学在这方面,我们的目标是开发一个模块化的机械发光(ML)材料平台,
非侵入性的,声学激活各种光遗传学通道用于神经调制,
时空分辨率该项目建立在我们最近的技术成就之上,其中我们
开发了各种合成方法,以生产新型结构的无机纳米材料和高
压电有机陶瓷碎片。基于我们初步的计算模型,我们假设
这种结构能够实现更有效的菌株,使无机-有机组合物的ML性能最大化,
杂化纳米材料本项目旨在开发两种独特的基于ML的光遗传学调制系统
纳米材料在目标1中,我们将合成掺杂各种金属离子的硫化锌纳米颗粒,以控制
发射波长,并研究纳米颗粒形态和尺寸对ML性能的影响。
此外,这些纳米颗粒和包封聚合物之间的相互作用将被优化,
最大化纳米复合材料的ML性能。在目标2中,我们将表征
电纺纤维衍生的纳米片段,并研究ML纳米颗粒掺入到
压电纳米碎片,以提高ML性能。基于神经干细胞系的体外模型
将利用用视紫红质-2转导的细胞来确定这些ML纳米材料的性能
用于神经调节。总的来说,我们预计这些研究将为ML纳米颗粒提供材料基础
可注射到循环系统中(目的1)和ML纳米片段可注射到感兴趣的部位(目的2)。
这个探索性项目的结果预计将确定ML纳米材料平台的候选者,
在后续研究中进一步优化和动物试验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jin Nam其他文献
Jin Nam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 28.24万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 28.24万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 28.24万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 28.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 28.24万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 28.24万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 28.24万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 28.24万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 28.24万 - 项目类别:
Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 28.24万 - 项目类别:
Standard Grant