Caspase-1 Activation by the Inflammasomes
炎症小体激活 Caspase-1
基本信息
- 批准号:10616513
- 负责人:
- 金额:$ 53.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-15 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:1-Phosphatidylinositol 4-KinaseAcidityAnti-Inflammatory AgentsArthritisAtherosclerosisBindingCASP1 geneCationsCell DeathCell VolumesChloridesCholesterolDataDevelopmentDiseaseGenerationsGeneticGoutHealthHomeostasisHumanIL18 geneInfectionInflammasomeInflammatoryInflammatory ResponseInnate Immune ResponseInterleukin-1 betaIonsLaboratoriesLigandsLightLysineMacrophageMass Spectrum AnalysisMediatingMitosisMolecularMolecular ConformationMultiprotein ComplexesNIMANatural ImmunityNon-Insulin-Dependent Diabetes MellitusNucleotidesPathway interactionsPatternPhasePhosphorylationPhosphotransferasesPhysiologicalPost-Translational Protein ProcessingProcessProductionProtein DephosphorylationProteinsReceptor SignalingRegulationResearchRoleSignal InductionSignal PathwaySignal TransductionSilicon DioxideSiteStimulusTissuesToll-Like Receptor PathwayToll-like receptorsUbiquitinationUrateVirus Diseasescell injurycytokineexperimental studyin vivoinsightmarenostrinmicrobialnovelnovel therapeuticspathogenpathogenic microbepathogenic virusphosphatidylinositol 4-phosphateprotein kinase Drecruitresponsestress granulesymportertherapeutic developmenttrans-Golgi Network
项目摘要
Inflammasomes are multi-protein complexes that assemble to activate caspase-1 in response to tissue damage
and infection by microbial or viral pathogens. Once activated, caspase-1 processes the inactive proforms of
interleukin-1β (IL-1β) and interleukin-18 (IL-18) to produce the active pro-inflammatory cytokines IL-1β and IL-
18, respectively. In addition, caspase-1 processes the gasdermin protein GSDMD to induce pyroptosis or
inflammatory cell death. The NLRP3 inflammasome is unique among the different inflammasomes in that it is
activated by diverse pathogen-associated and danger-associated molecular patterns (PAMPs and DAMPs)
derived from infection with microbial pathogens, or tissue damage. As a result, uncontrolled NLRP3 activation
can lead to a number of human inflammatory diseases, including gout, arthritis, atherosclerosis, and type 2
diabetes. The mechanism of NLRP3 activation by these seemingly unrelated stimuli is poorly understood but is
currently believed to require two distinct signals; a priming signal or “signal 1” produced by Toll-like receptors
(TLRs) and an activation signal or “signal 2” that induces fragmentation of trans Golgi network (TGN) and
binding to NEK7. Studies in the applicant's laboratory demonstrated that signal 1 induces post-translational
modification (PTM) of NLRP3 at critical sites via the MyD88 and TRIF signaling pathways and partial
oligomerization of NLRP3. In this application, studies are proposed to elucidate how TLR-induced PTM
contributes to posttranslational priming of the NLRP3 inflammasome by employing mass spectrometry to
identify and characterize all critical changes in the phosphorylation and other PTM profile of NLRP3 induced by
signal 1, and investigating how these changes contribute to activation of NLRP3. Additional aims will
investigate the effect of signal 1 and signal 1-induced PTM on NLRP3 association with dispersed TGN and
NEK7, and identify the TGN-associated kinases required for final assembly and activation of the
inflammasome. Finally, preliminary evidence suggest that kinases involved in the regulation of intracellular ion
homeostasis exert negative control on activation of NLRP3 by signal 2. Thus, additional experiments will
investigate how signaling from these kinases in macrophages impacts NEK7 phosphorylation and interaction
with NLRP3, and how genetic deficiency in these kinases impacts NLRP3-mediated pro-inflammatory responses
to PAMPs and DAMPs in vivo. Results from this research will provide fundamental new insights into the pathways
that regulate the assembly and activation of the NLRP3 inflammasome, and the cellular mechanisms that control
its activation. Successful completion of this study should have a high impact on the field by providing a unifying
paradigm for how NLRP3 can be regulated by an exceptionally diverse group of activating stimuli. Understanding
these mechanisms is of great scientific and health significance as this should better our understanding of the
molecular basis of NLRP3-related diseases and should in the long term help in the development of therapeutics
to alleviate these inflammatory diseases.
炎症小体是多蛋白复合物,可聚集激活 caspase-1 以响应组织损伤
以及微生物或病毒病原体的感染。一旦激活,caspase-1 就会处理非活性的前体
白细胞介素-1β (IL-1β) 和白细胞介素-18 (IL-18) 产生活性促炎细胞因子 IL-1β 和 IL-
分别为 18 个。此外,caspase-1 处理 Gasdermin 蛋白 GSDMD 来诱导细胞焦亡或
炎症细胞死亡。 NLRP3 炎症小体在不同的炎症小体中是独特的,因为它
由多种病原体相关和危险相关分子模式(PAMP 和 DAMP)激活
源自微生物病原体感染或组织损伤。结果,失控的 NLRP3 激活
可导致多种人类炎症性疾病,包括痛风、关节炎、动脉粥样硬化和2型
糖尿病。人们对这些看似无关的刺激激活 NLRP3 的机制知之甚少,但
目前认为需要两个不同的信号; Toll 样受体产生的启动信号或“信号 1”
(TLR) 和诱导反式高尔基体网络 (TGN) 碎片的激活信号或“信号 2”
与 NEK7 结合。申请人实验室的研究表明信号1诱导翻译后
通过 MyD88 和 TRIF 信号通路在关键位点对 NLRP3 进行修饰 (PTM)
NLRP3 的寡聚化。在此应用中,建议进行研究以阐明 TLR 诱导的 PTM
通过使用质谱分析来促进 NLRP3 炎症小体的翻译后启动
识别和表征 NLRP3 磷酸化和其他 PTM 谱中由以下因素引起的所有关键变化:
信号 1,并研究这些变化如何促进 NLRP3 的激活。额外的目标将
研究信号 1 和信号 1 诱导的 PTM 对 NLRP3 与分散的 TGN 关联的影响
NEK7,并鉴定最终组装和激活所需的 TGN 相关激酶
炎症小体。最后,初步证据表明激酶参与细胞内离子的调节
稳态通过信号 2 对 NLRP3 的激活施加负控制。因此,额外的实验将
研究巨噬细胞中这些激酶的信号传导如何影响 NEK7 磷酸化和相互作用
NLRP3 的作用,以及这些激酶的遗传缺陷如何影响 NLRP3 介导的促炎症反应
体内的 PAMP 和 DAMP。这项研究的结果将为这些途径提供基本的新见解
调节 NLRP3 炎症小体的组装和激活,以及控制的细胞机制
它的激活。这项研究的成功完成应该会通过提供统一的结果对该领域产生重大影响
NLRP3 如何通过一组异常多样化的激活刺激进行调节的范例。理解
这些机制具有重大的科学和健康意义,因为这可以更好地我们了解
NLRP3 相关疾病的分子基础,从长远来看应该有助于治疗方法的开发
来缓解这些炎症性疾病。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Chloride sensing by WNK1 regulates NLRP3 inflammasome activation and pyroptosis.
- DOI:10.1038/s41467-021-24784-4
- 发表时间:2021-07-27
- 期刊:
- 影响因子:16.6
- 作者:Mayes-Hopfinger L;Enache A;Xie J;Huang CL;Köchl R;Tybulewicz VLJ;Fernandes-Alnemri T;Alnemri ES
- 通讯作者:Alnemri ES
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emad S Alnemri其他文献
Apoptosis in human monocytic THP.1 cells involves several distinct targets of N-tosyl-L-phenylalanyl chloromethyl ketone (TPCK)
人单核细胞 THP.1 细胞的凋亡涉及 N-甲苯磺酰-L-苯丙氨酰氯甲基酮(TPCK)的几个不同靶点
- DOI:
10.1038/sj.cdd.4400284 - 发表时间:
1997-10-01 - 期刊:
- 影响因子:15.400
- 作者:
Huijun Zhu;David Dinsdale;Emad S Alnemri;Gerald M Cohen - 通讯作者:
Gerald M Cohen
Emad S Alnemri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emad S Alnemri', 18)}}的其他基金
Mechanisms of cell death in cutaneous melanoma
皮肤黑色素瘤细胞死亡的机制
- 批准号:
10316444 - 财政年份:2021
- 资助金额:
$ 53.19万 - 项目类别:
Mechanisms of cell death in cutaneous melanoma
皮肤黑色素瘤细胞死亡的机制
- 批准号:
10612054 - 财政年份:2021
- 资助金额:
$ 53.19万 - 项目类别:
Mechanisms of cell death in cutaneous melanoma
皮肤黑色素瘤细胞死亡的机制
- 批准号:
10428658 - 财政年份:2021
- 资助金额:
$ 53.19万 - 项目类别:
Regulation of the Cell Death Program by DFNA5
DFNA5 对细胞死亡程序的调节
- 批准号:
10531607 - 财政年份:2019
- 资助金额:
$ 53.19万 - 项目类别:
Regulation of the Cell Death Program by DFNA5
DFNA5 对细胞死亡程序的调节
- 批准号:
10307533 - 财政年份:2019
- 资助金额:
$ 53.19万 - 项目类别:
相似海外基金
Understanding the Impacts of Lewis Acidity and Coordination on Butyl Rubber Polymerization
了解路易斯酸度和配位对丁基橡胶聚合的影响
- 批准号:
575175-2022 - 财政年份:2022
- 资助金额:
$ 53.19万 - 项目类别:
Alliance Grants
New Concepts in Lewis Acidity, Catalysis, and Polymer Science: Functional Main Group Cages
路易斯酸、催化和高分子科学的新概念:功能主族笼
- 批准号:
RGPIN-2018-05574 - 财政年份:2022
- 资助金额:
$ 53.19万 - 项目类别:
Discovery Grants Program - Individual
Constraining the Sulphur Cycling Pathway Causing Delayed Acidity in Mine Wastewater
限制硫循环路径导致矿山废水酸度延迟
- 批准号:
568873-2022 - 财政年份:2022
- 资助金额:
$ 53.19万 - 项目类别:
Postgraduate Scholarships - Doctoral
Quantifying Lewis acidity for Chemoselective Lewis acid Catalysis
化学选择性路易斯酸催化中路易斯酸度的定量
- 批准号:
559925-2021 - 财政年份:2022
- 资助金额:
$ 53.19万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Control of Inflammatory Acidity in Mucosal Inflammation
粘膜炎症中炎症酸度的控制
- 批准号:
10512056 - 财政年份:2021
- 资助金额:
$ 53.19万 - 项目类别:
New Concepts in Lewis Acidity, Catalysis, and Polymer Science: Functional Main Group Cages
路易斯酸、催化和高分子科学的新概念:功能主族笼
- 批准号:
RGPIN-2018-05574 - 财政年份:2021
- 资助金额:
$ 53.19万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Permissive acidity as a regulator of plant cell expansion
职业:允许的酸度作为植物细胞扩张的调节剂
- 批准号:
2045795 - 财政年份:2021
- 资助金额:
$ 53.19万 - 项目类别:
Standard Grant
Elucidation of rhizospheric consortium responses to two gradients of climate and soil acidity
阐明根际群落对气候和土壤酸度两个梯度的响应
- 批准号:
21H02232 - 财政年份:2021
- 资助金额:
$ 53.19万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Control of Inflammatory Acidity in Mucosal Inflammation
粘膜炎症中炎症酸度的控制
- 批准号:
10255086 - 财政年份:2021
- 资助金额:
$ 53.19万 - 项目类别:
Quantifying Lewis acidity for Chemoselective Lewis acid Catalysis
化学选择性路易斯酸催化中路易斯酸度的定量
- 批准号:
559925-2021 - 财政年份:2021
- 资助金额:
$ 53.19万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral














{{item.name}}会员




