SAMHD1 mediated dNTP regulation and HIV in myeloid cells
SAMHD1 介导的 dNTP 调节和骨髓细胞中的 HIV
基本信息
- 批准号:10616679
- 负责人:
- 金额:$ 68.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AnabolismAntiviral TherapyBindingBiological AssayBrainCD4 Positive T LymphocytesCDC2 geneCDK2 geneCaenorhabditis elegansCellsConsumptionCryoelectron MicroscopyDNA biosynthesisDrosophila genusEngineeringExposure toHIVHIV-1HIV-2HealthHomeostasisHost Defense MechanismHumanInfectionInterphase CellInvestigationKineticsLentivirusLife Cycle StagesMacrophageMediatingMetabolicMetabolismMicrogliaMitoticModelingMolecularMyelogenousMyeloid CellsNatureOrthologous GenePathogenesisPhosphoric Monoester HydrolasesPhosphorylationProtein DephosphorylationProtein Phosphatase 2A Regulatory Subunit PR53ProteinsRegulationReportingReverse TranscriptionRibonucleotide ReductaseRoleSAM DomainSIVTailViralViral ProteinsViral reservoirX-Ray Crystallographycell typecyclin A2enzyme biosynthesisinhibitormetermonocytemulticatalytic endopeptidase complexneuroAIDSnovelprevent
项目摘要
Project Summary
Lentiviruses including HIV-1 infect both activated/dividing CD4+ T cells and terminally-
differentiated/nondividing myeloid cells (e.g., macrophages and microglia) during the course of their
pathogenesis. The reverse transcription of lentiviruses consumes dNTP substrates provided from the infected
host cells. However, it was predicted that nondividing cells such as macrophages should contain limited dNTP
pools. Indeed, we previously reported that human primary monocyte derived macrophages harbor extremely
limited dNTP levels (20-40 nM), compared to activated CD4+ T cells (1-5 µM), and this limited dNTP level in
macrophages restricts HIV-1 replication. We also reported that the host SAM domain and HD domain
containing protein 1 (SAMHD1), which hydrolyzes dNTPs and is abundant in macrophages, is responsible for
the low dNTP levels and the restricted HIV-1 replication in macrophages. Recently, we discovered two novel
regulatory circuits of SAMHD1 mediated dNTP metabolism that can operate in nondividing myeloid cells
for dNTP depletion and HIV-1 restriction. In this proposal, we propose to elucidate virological, molecular and
structural natures of these regulatory circuits of SAMHD1-mediated dNTP depletion in nondividing myeloid
cells. In Aim 1, we will explore our hypothesis that SAMHD1 not only hydrolyzes dNTPs but also directly
suppresses the RNR-mediated dNTP biosynthesis by binding to RNR in macrophages. Our hypothesis
predicts that Vpx can rapidly elevate dNTP levels in macrophages following SAMHD1 degradation by
simultaneously removing a suppressive regulator of RNR mediated dNTP biosynthesis. Indeed, we recently
observed the direct binding of SAMHD1 to RNR R1 subunit, supporting this hypothesis. Here, we will
investigate this negative dNTP metabolic regulatory circuit mediated by the SAMHD1-RNR interaction for
dNTP depletion and HIV-1 restriction in nondividing myeloid cells. In Aim 2, we hypothesize that cellular PP2A-
B55 phosphatase is a key positive regulator of SAMHD1 in nondividing myeloid cells that can keep SAMHD1
un-phosphorylated and enzymatically active for dNTP depletion and HIV-1 restriction. Indeed, we observed the
interaction of SAMHD1 with B55 regulatory subunit of PP2A in nondividing myeloid cells, supporting this
hypothesis. Here, we will investigate the roles of SAMHD1-PP2A interaction in the negative regulation of dNTP
metabolism and HIV-1 restriction in macrophages. In Aim 3, we propose to investigate the structural and
molecular natures of the SAMHD1 interactions with RNR and PP2A that contribute to dNTP depletion and HIV-
1 restriction in nondividing myeloid cells by employing cryo-EM and X-ray crystallography. Overall, we will
explore the unique SAMHD1-mediated dNTP metabolic regulatory circuits in nondividing myeloid cells, which
are engineered by two distinct regulators, and this proposal aims to discover new and better antiviral concepts
specifically targeting HIV-1 in long-living myeloid reservoirs that contribute to HIV-1 persistence.
项目概要
包括 HIV-1 在内的慢病毒感染激活/分裂的 CD4+ T 细胞并最终感染
分化/非分裂骨髓细胞(例如巨噬细胞和小胶质细胞)
发病。慢病毒的逆转录消耗受感染者提供的 dNTP 底物
宿主细胞。然而,据预测,非分裂细胞(例如巨噬细胞)应含有有限的 dNTP
水池。事实上,我们之前报道过人类原代单核细胞衍生的巨噬细胞极其具有
与激活的 CD4+ T 细胞 (1-5 µM) 相比,dNTP 水平有限 (20-40 nM),并且这种有限的 dNTP 水平
巨噬细胞限制 HIV-1 复制。我们还报告了主机 SAM 域和 HD 域
含有蛋白质 1 (SAMHD1),可水解 dNTP,并且在巨噬细胞中含量丰富,负责
低 dNTP 水平和巨噬细胞中 HIV-1 复制受限。最近,我们发现了两本小说
SAMHD1 介导的 dNTP 代谢调节回路可在非分裂骨髓细胞中发挥作用
用于 dNTP 耗尽和 HIV-1 限制。在本提案中,我们建议阐明病毒学、分子学和
非分裂骨髓中 SAMHD1 介导的 dNTP 消耗的这些调节回路的结构性质
细胞。在目标 1 中,我们将探索我们的假设,即 SAMHD1 不仅水解 dNTP,而且还直接水解
通过与巨噬细胞中的 RNR 结合来抑制 RNR 介导的 dNTP 生物合成。我们的假设
预测 Vpx 可以在 SAMHD1 降解后迅速提高巨噬细胞中的 dNTP 水平
同时去除 RNR 介导的 dNTP 生物合成的抑制性调节因子。确实,我们最近
观察到 SAMHD1 与 RNR R1 亚基的直接结合,支持了这一假设。在这里,我们将
研究由 SAMHD1-RNR 相互作用介导的负 dNTP 代谢调节回路
不分裂骨髓细胞中 dNTP 耗尽和 HIV-1 限制。在目标 2 中,我们假设细胞 PP2A-
B55磷酸酶是非分裂骨髓细胞中 SAMHD1 的关键正调节因子,可以保持 SAMHD1
非磷酸化且具有酶活性,可消除 dNTP 并限制 HIV-1。事实上,我们观察到
SAMHD1 与非分裂骨髓细胞中 PP2A 的 B55 调节亚基的相互作用,支持了这一点
假设。在这里,我们将研究 SAMHD1-PP2A 相互作用在 dNTP 负调控中的作用
巨噬细胞中的代谢和 HIV-1 限制。在目标 3 中,我们建议研究结构和
SAMHD1 与 RNR 和 PP2A 相互作用的分子性质,导致 dNTP 耗尽和 HIV-
通过采用冷冻电镜和 X 射线晶体学对非分裂骨髓细胞进行 1 限制。总体而言,我们将
探索非分裂骨髓细胞中独特的 SAMHD1 介导的 dNTP 代谢调节回路,
由两个不同的监管机构设计,该提案旨在发现新的、更好的抗病毒概念
专门针对导致 HIV-1 持久存在的长寿命骨髓库中的 HIV-1。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Baek Kim其他文献
Baek Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Baek Kim', 18)}}的其他基金
SAMHD1 mediated dNTP regulation and HIV in myeloid cells
SAMHD1 介导的 dNTP 调节和骨髓细胞中的 HIV
- 批准号:
10398255 - 财政年份:2021
- 资助金额:
$ 68.89万 - 项目类别:
SAMHD1 mediated dNTP regulation and HIV in myeloid cells
SAMHD1 介导的 dNTP 调节和骨髓细胞中的 HIV
- 批准号:
10271627 - 财政年份:2021
- 资助金额:
$ 68.89万 - 项目类别:
Elucidating SAMHD1 in DNA Double-Strand Break Repair (Supplement)
阐明 DNA 双链断裂修复中的 SAMHD1(补充)
- 批准号:
10817401 - 财政年份:2020
- 资助金额:
$ 68.89万 - 项目类别:
SARS-CoV-2 polymerase inhibitor screening
SARS-CoV-2聚合酶抑制剂筛选
- 批准号:
10230304 - 财政年份:2020
- 资助金额:
$ 68.89万 - 项目类别:
Elucidating SAMHD1 in DNA Double-Strand Break Repair
阐明 SAMHD1 在 DNA 双链断裂修复中的作用
- 批准号:
10214575 - 财政年份:2020
- 资助金额:
$ 68.89万 - 项目类别:
Elucidating SAMHD1 in DNA Double-Strand Break Repair (Supplement)
阐明 DNA 双链断裂修复中的 SAMHD1(补充)
- 批准号:
10742588 - 财政年份:2020
- 资助金额:
$ 68.89万 - 项目类别:
Elucidating SAMHD1 in DNA Double-Strand Break Repair
阐明 SAMHD1 在 DNA 双链断裂修复中的作用
- 批准号:
10418774 - 财政年份:2020
- 资助金额:
$ 68.89万 - 项目类别:
Elucidating SAMHD1 in DNA Double-Strand Break Repair
阐明 SAMHD1 在 DNA 双链断裂修复中的作用
- 批准号:
10663248 - 财政年份:2020
- 资助金额:
$ 68.89万 - 项目类别:
Lentivirus Replication Strategy and Pathogenesis
慢病毒复制策略和发病机制
- 批准号:
10700321 - 财政年份:2018
- 资助金额:
$ 68.89万 - 项目类别:
Structural and Chemical Analysis of Highly Potent ALLINI Platform
高效 ALLINI 平台的结构和化学分析
- 批准号:
9789826 - 财政年份:2018
- 资助金额:
$ 68.89万 - 项目类别:
相似海外基金
Dose Flexible Combination 3D-Printed Delivery Systems for Antiviral Therapy in Children
用于儿童抗病毒治疗的剂量灵活组合 3D 打印输送系统
- 批准号:
10682185 - 财政年份:2023
- 资助金额:
$ 68.89万 - 项目类别:
COVID-19 Immunologic Antiviral therapy with Omalizumab (CIAO trial) - An Adaptive Phase II Randomized-Controlled Clinical Trial
使用奥马珠单抗进行 COVID-19 免疫抗病毒治疗(CIAO 试验)——适应性 II 期随机对照临床试验
- 批准号:
475843 - 财政年份:2022
- 资助金额:
$ 68.89万 - 项目类别:
Studentship Programs
COVID-19 Immunologic Antiviral therapy with Omalizumab (CIAO trial) - An Adaptive Phase II Randomized-Controlled Clinical Trial
使用奥马珠单抗进行 COVID-19 免疫抗病毒治疗(CIAO 试验)——适应性 II 期随机对照临床试验
- 批准号:
474485 - 财政年份:2022
- 资助金额:
$ 68.89万 - 项目类别:
Studentship Programs
Discovery of Bunyaviral Endonuclease Inhibitors for Antiviral Therapy
用于抗病毒治疗的布尼亚病毒核酸内切酶抑制剂的发现
- 批准号:
10683329 - 财政年份:2022
- 资助金额:
$ 68.89万 - 项目类别:
Discovery of Bunyaviral Endonuclease Inhibitors for Antiviral Therapy
用于抗病毒治疗的布尼亚病毒核酸内切酶抑制剂的发现
- 批准号:
10481430 - 财政年份:2022
- 资助金额:
$ 68.89万 - 项目类别:
An interdisciplinary approach towards antiviral therapy discovery
抗病毒疗法发现的跨学科方法
- 批准号:
nhmrc : 1196520 - 财政年份:2021
- 资助金额:
$ 68.89万 - 项目类别:
Investigator Grants
Applying an 'omics' approach to predict hepatic decompensation events and hepatocellular carcinoma in veterans after HCV cure with direct acting antiviral therapy
应用“组学”方法预测退伍军人在使用直接作用抗病毒疗法治愈 HCV 后的肝失代偿事件和肝细胞癌
- 批准号:
10260234 - 财政年份:2021
- 资助金额:
$ 68.89万 - 项目类别:
Applying an 'omics' approach to predict hepatic decompensation events and hepatocellular carcinoma in veterans after HCV cure with direct acting antiviral therapy
应用“组学”方法预测退伍军人在使用直接作用抗病毒疗法治愈 HCV 后的肝失代偿事件和肝细胞癌
- 批准号:
10548114 - 财政年份:2021
- 资助金额:
$ 68.89万 - 项目类别:
Disparities in the Diffusion of Direct-Acting Antiviral Therapy for Hepatitis C among Baby Boomers: A Mixed-Methods Study
婴儿潮一代丙型肝炎直接作用抗病毒疗法传播的差异:一项混合方法研究
- 批准号:
10400318 - 财政年份:2020
- 资助金额:
$ 68.89万 - 项目类别:
COVID-19 Immunologic Antiviral therapy with Omalizumab (CIAO trial)
使用奥马珠单抗进行 COVID-19 免疫抗病毒治疗(CIAO 试验)
- 批准号:
449805 - 财政年份:2020
- 资助金额:
$ 68.89万 - 项目类别:
Studentship Programs














{{item.name}}会员




