SAMHD1 mediated dNTP regulation and HIV in myeloid cells
SAMHD1 介导的 dNTP 调节和骨髓细胞中的 HIV
基本信息
- 批准号:10616679
- 负责人:
- 金额:$ 68.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AnabolismAntiviral TherapyBindingBiological AssayBrainCD4 Positive T LymphocytesCDC2 geneCDK2 geneCaenorhabditis elegansCellsConsumptionCryoelectron MicroscopyDNA biosynthesisDrosophila genusEngineeringExposure toHIVHIV-1HIV-2HealthHomeostasisHost Defense MechanismHumanInfectionInterphase CellInvestigationKineticsLentivirusLife Cycle StagesMacrophageMediatingMetabolicMetabolismMicrogliaMitoticModelingMolecularMyelogenousMyeloid CellsNatureOrthologous GenePathogenesisPhosphoric Monoester HydrolasesPhosphorylationProtein DephosphorylationProtein Phosphatase 2A Regulatory Subunit PR53ProteinsRegulationReportingReverse TranscriptionRibonucleotide ReductaseRoleSAM DomainSIVTailViralViral ProteinsViral reservoirX-Ray Crystallographycell typecyclin A2enzyme biosynthesisinhibitormetermonocytemulticatalytic endopeptidase complexneuroAIDSnovelprevent
项目摘要
Project Summary
Lentiviruses including HIV-1 infect both activated/dividing CD4+ T cells and terminally-
differentiated/nondividing myeloid cells (e.g., macrophages and microglia) during the course of their
pathogenesis. The reverse transcription of lentiviruses consumes dNTP substrates provided from the infected
host cells. However, it was predicted that nondividing cells such as macrophages should contain limited dNTP
pools. Indeed, we previously reported that human primary monocyte derived macrophages harbor extremely
limited dNTP levels (20-40 nM), compared to activated CD4+ T cells (1-5 µM), and this limited dNTP level in
macrophages restricts HIV-1 replication. We also reported that the host SAM domain and HD domain
containing protein 1 (SAMHD1), which hydrolyzes dNTPs and is abundant in macrophages, is responsible for
the low dNTP levels and the restricted HIV-1 replication in macrophages. Recently, we discovered two novel
regulatory circuits of SAMHD1 mediated dNTP metabolism that can operate in nondividing myeloid cells
for dNTP depletion and HIV-1 restriction. In this proposal, we propose to elucidate virological, molecular and
structural natures of these regulatory circuits of SAMHD1-mediated dNTP depletion in nondividing myeloid
cells. In Aim 1, we will explore our hypothesis that SAMHD1 not only hydrolyzes dNTPs but also directly
suppresses the RNR-mediated dNTP biosynthesis by binding to RNR in macrophages. Our hypothesis
predicts that Vpx can rapidly elevate dNTP levels in macrophages following SAMHD1 degradation by
simultaneously removing a suppressive regulator of RNR mediated dNTP biosynthesis. Indeed, we recently
observed the direct binding of SAMHD1 to RNR R1 subunit, supporting this hypothesis. Here, we will
investigate this negative dNTP metabolic regulatory circuit mediated by the SAMHD1-RNR interaction for
dNTP depletion and HIV-1 restriction in nondividing myeloid cells. In Aim 2, we hypothesize that cellular PP2A-
B55 phosphatase is a key positive regulator of SAMHD1 in nondividing myeloid cells that can keep SAMHD1
un-phosphorylated and enzymatically active for dNTP depletion and HIV-1 restriction. Indeed, we observed the
interaction of SAMHD1 with B55 regulatory subunit of PP2A in nondividing myeloid cells, supporting this
hypothesis. Here, we will investigate the roles of SAMHD1-PP2A interaction in the negative regulation of dNTP
metabolism and HIV-1 restriction in macrophages. In Aim 3, we propose to investigate the structural and
molecular natures of the SAMHD1 interactions with RNR and PP2A that contribute to dNTP depletion and HIV-
1 restriction in nondividing myeloid cells by employing cryo-EM and X-ray crystallography. Overall, we will
explore the unique SAMHD1-mediated dNTP metabolic regulatory circuits in nondividing myeloid cells, which
are engineered by two distinct regulators, and this proposal aims to discover new and better antiviral concepts
specifically targeting HIV-1 in long-living myeloid reservoirs that contribute to HIV-1 persistence.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Baek Kim其他文献
Baek Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Baek Kim', 18)}}的其他基金
SAMHD1 mediated dNTP regulation and HIV in myeloid cells
SAMHD1 介导的 dNTP 调节和骨髓细胞中的 HIV
- 批准号:
10398255 - 财政年份:2021
- 资助金额:
$ 68.89万 - 项目类别:
SAMHD1 mediated dNTP regulation and HIV in myeloid cells
SAMHD1 介导的 dNTP 调节和骨髓细胞中的 HIV
- 批准号:
10271627 - 财政年份:2021
- 资助金额:
$ 68.89万 - 项目类别:
Elucidating SAMHD1 in DNA Double-Strand Break Repair (Supplement)
阐明 DNA 双链断裂修复中的 SAMHD1(补充)
- 批准号:
10817401 - 财政年份:2020
- 资助金额:
$ 68.89万 - 项目类别:
SARS-CoV-2 polymerase inhibitor screening
SARS-CoV-2聚合酶抑制剂筛选
- 批准号:
10230304 - 财政年份:2020
- 资助金额:
$ 68.89万 - 项目类别:
Elucidating SAMHD1 in DNA Double-Strand Break Repair
阐明 SAMHD1 在 DNA 双链断裂修复中的作用
- 批准号:
10214575 - 财政年份:2020
- 资助金额:
$ 68.89万 - 项目类别:
Elucidating SAMHD1 in DNA Double-Strand Break Repair (Supplement)
阐明 DNA 双链断裂修复中的 SAMHD1(补充)
- 批准号:
10742588 - 财政年份:2020
- 资助金额:
$ 68.89万 - 项目类别:
Elucidating SAMHD1 in DNA Double-Strand Break Repair
阐明 SAMHD1 在 DNA 双链断裂修复中的作用
- 批准号:
10418774 - 财政年份:2020
- 资助金额:
$ 68.89万 - 项目类别:
Elucidating SAMHD1 in DNA Double-Strand Break Repair
阐明 SAMHD1 在 DNA 双链断裂修复中的作用
- 批准号:
10663248 - 财政年份:2020
- 资助金额:
$ 68.89万 - 项目类别:
Lentivirus Replication Strategy and Pathogenesis
慢病毒复制策略和发病机制
- 批准号:
10700321 - 财政年份:2018
- 资助金额:
$ 68.89万 - 项目类别:
Structural and Chemical Analysis of Highly Potent ALLINI Platform
高效 ALLINI 平台的结构和化学分析
- 批准号:
9789826 - 财政年份:2018
- 资助金额:
$ 68.89万 - 项目类别:
相似海外基金
Dose Flexible Combination 3D-Printed Delivery Systems for Antiviral Therapy in Children
用于儿童抗病毒治疗的剂量灵活组合 3D 打印输送系统
- 批准号:
10682185 - 财政年份:2023
- 资助金额:
$ 68.89万 - 项目类别:
COVID-19 Immunologic Antiviral therapy with Omalizumab (CIAO trial) - An Adaptive Phase II Randomized-Controlled Clinical Trial
使用奥马珠单抗进行 COVID-19 免疫抗病毒治疗(CIAO 试验)——适应性 II 期随机对照临床试验
- 批准号:
475843 - 财政年份:2022
- 资助金额:
$ 68.89万 - 项目类别:
Studentship Programs
COVID-19 Immunologic Antiviral therapy with Omalizumab (CIAO trial) - An Adaptive Phase II Randomized-Controlled Clinical Trial
使用奥马珠单抗进行 COVID-19 免疫抗病毒治疗(CIAO 试验)——适应性 II 期随机对照临床试验
- 批准号:
474485 - 财政年份:2022
- 资助金额:
$ 68.89万 - 项目类别:
Studentship Programs
Discovery of Bunyaviral Endonuclease Inhibitors for Antiviral Therapy
用于抗病毒治疗的布尼亚病毒核酸内切酶抑制剂的发现
- 批准号:
10683329 - 财政年份:2022
- 资助金额:
$ 68.89万 - 项目类别:
Discovery of Bunyaviral Endonuclease Inhibitors for Antiviral Therapy
用于抗病毒治疗的布尼亚病毒核酸内切酶抑制剂的发现
- 批准号:
10481430 - 财政年份:2022
- 资助金额:
$ 68.89万 - 项目类别:
An interdisciplinary approach towards antiviral therapy discovery
抗病毒疗法发现的跨学科方法
- 批准号:
nhmrc : 1196520 - 财政年份:2021
- 资助金额:
$ 68.89万 - 项目类别:
Investigator Grants
Applying an 'omics' approach to predict hepatic decompensation events and hepatocellular carcinoma in veterans after HCV cure with direct acting antiviral therapy
应用“组学”方法预测退伍军人在使用直接作用抗病毒疗法治愈 HCV 后的肝失代偿事件和肝细胞癌
- 批准号:
10260234 - 财政年份:2021
- 资助金额:
$ 68.89万 - 项目类别:
Applying an 'omics' approach to predict hepatic decompensation events and hepatocellular carcinoma in veterans after HCV cure with direct acting antiviral therapy
应用“组学”方法预测退伍军人在使用直接作用抗病毒疗法治愈 HCV 后的肝失代偿事件和肝细胞癌
- 批准号:
10548114 - 财政年份:2021
- 资助金额:
$ 68.89万 - 项目类别:
Disparities in the Diffusion of Direct-Acting Antiviral Therapy for Hepatitis C among Baby Boomers: A Mixed-Methods Study
婴儿潮一代丙型肝炎直接作用抗病毒疗法传播的差异:一项混合方法研究
- 批准号:
10400318 - 财政年份:2020
- 资助金额:
$ 68.89万 - 项目类别:
COVID-19 Immunologic Antiviral therapy with Omalizumab (CIAO trial)
使用奥马珠单抗进行 COVID-19 免疫抗病毒治疗(CIAO 试验)
- 批准号:
449805 - 财政年份:2020
- 资助金额:
$ 68.89万 - 项目类别:
Studentship Programs














{{item.name}}会员




