Chemical Approaches to Studying the Mechanisms and Biophysical Properties of Complex Metallocofactors

研究复杂金属辅因子的机制和生物物理性质的化学方法

基本信息

项目摘要

Project Summary/Abstract Enzymes with complex metallocofactors in their active sites catalyze myriad transformations relevant to human health and disease. Understanding their reaction mechanisms requires molecular-level characterization of their resting states and intermediate states, and metal-specific spectroscopic techniques are especially useful in this endeavor. However, the high- nuclearity of many metallocofactors can limit the usefulness of such techniques; the signals arising from multiple metal sites can be challenging to resolve, especially in mixtures of reaction intermediates. Moreover, it is often impossible to map the rich spectroscopic information onto the geometric structure, and this severely limits our understanding of the chemical bonding—and therefore the reactivity—of complex metallocofactors. We propose to address these challenges by developing methods for modifying the isotopic and elemental compositions of complex metallocofactors, in particular the nitrogenase catalytic cofactors. Nitrogenases are responsible for supplying a significant portion of the fixed nitrogen on the planet, and they therefore play an important role in maintaining a healthy and growing human population. Their catalytic cofactors are among the most complex in Nature, and as a result their reaction mechanisms have been especially difficult to characterize. To overcome these challenges and gain new insights into the mechanism of biological nitrogen fixation, we will develop chemical methods for precisely altering the isotopic and elemental composition of nitrogenase cofactors. Our approach will be to discover mild protocols for removing specific Fe sites in nitrogenase cofactors and subsequently replacing them with 57Fe. The site-selectivity of the label will allow for the electronic structure (as elucidated spectroscopically) to be connected to the geometric structure (as defined crystallographically), and will thereby provide unprecedented insights into the chemical bonding and reactivity of nitrogenase cofactors. Studies of these cofactors in both their resting states and intermediate states comprise the heart of the proposal. We will also extend the site-selective 57Fe labeling protocol to incorporating different metals into specific sites of nitrogenase cofactors. This will yield artificial metalloenzymes that will serve as mechanistic probes with potentially unique properties and/or reactivity. Completion of this project will provide unprecedented mechanistic insights into biological nitrogen fixation and will articulate concepts and protocols for rendering complex metallocofactors as mechanistically tractable as mononuclear active sites.
项目摘要/摘要 活性部位具有复杂金属辅酶因子的酶催化与人类健康有关的无数转化和 疾病。要了解它们的反应机理,需要在分子水平上表征它们的休眠状态和 中间态和特定于金属的光谱技术在这一努力中特别有用。然而,高- 许多金属辅因的核作用可能限制这种技术的有效性;来自多种金属的信号 特别是在反应中间体的混合物中,位点的解析可能是具有挑战性的。此外,通常不可能绘制地图 丰富的光谱信息传递到几何结构上,这严重限制了我们对化学物质的理解 复合金属因子的结合--因此也就是反应性。我们建议通过以下方式应对这些挑战 修饰复杂金属辅酶,特别是固氮酶的同位素和元素组成的方法 催化辅因子。固氮酶负责提供地球上很大一部分固定氮,并且 因此,它们在维持健康和不断增长的人口方面发挥着重要作用。它们的催化辅因子是 它们是自然界中最复杂的化合物之一,因此它们的反应机理特别难表征。 为了克服这些挑战并获得对生物固氮机制的新见解,我们将开发 精确改变固氮酶辅因子的同位素和元素组成的化学方法。我们的方法将 将发现温和的方案,用于去除固氮酶辅助因子中的特定铁位点,并随后将其替换为 57Fe。标记的位置选择性将允许电子结构(如光谱所阐明的)连接 几何结构(根据结晶学的定义),并因此将提供前所未有的洞察 固氮酶辅助因子的化学键和反应性。这些辅因子在静息状态和静息状态下的研究 中间国家构成了这项提议的核心。我们还将把位点选择性57Fe标记方案扩展到 将不同的金属结合到固氮酶辅助因子的特定位置。这将产生人造金属酶,它将 作为具有潜在独特性质和/或反应性的机械探头。该项目的完成将提供 对生物固氮的前所未有的机械洞察力,并将阐明渲染的概念和协议 复杂的金属因子,作为单核活性部位,在机械上易于处理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Leif Migdow Suess其他文献

Daniel Leif Migdow Suess的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Leif Migdow Suess', 18)}}的其他基金

Chemical Approaches to Studying the Mechanisms and Biophysical Properties of Complex Metallocofactors
研究复杂金属辅因子的机制和生物物理性质的化学方法
  • 批准号:
    10798896
  • 财政年份:
    2022
  • 资助金额:
    $ 30.6万
  • 项目类别:
Modeling the Organometallic Chemistry of Radical S-adenosylmethionine Enzymes
自由基 S-腺苷甲硫氨酸酶的有机金属化学建模
  • 批准号:
    10372003
  • 财政年份:
    2020
  • 资助金额:
    $ 30.6万
  • 项目类别:
Modeling the Organometallic Chemistry of Radical S-adenosylmethionine Enzymes
自由基 S-腺苷甲硫氨酸酶的有机金属化学建模
  • 批准号:
    10579212
  • 财政年份:
    2020
  • 资助金额:
    $ 30.6万
  • 项目类别:
Mechanistic Investigations of [FeFe] Hydrogenase H-Cluster Assembly
[FeFe]氢化酶 H 簇组装的机理研究
  • 批准号:
    9058117
  • 财政年份:
    2014
  • 资助金额:
    $ 30.6万
  • 项目类别:

相似海外基金

NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
  • 批准号:
    23K04919
  • 财政年份:
    2023
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
  • 批准号:
    22KJ2957
  • 财政年份:
    2023
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
  • 批准号:
    23K04494
  • 财政年份:
    2023
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
  • 批准号:
    23K13831
  • 财政年份:
    2023
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
  • 批准号:
    2238379
  • 财政年份:
    2023
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
  • 批准号:
    2154399
  • 财政年份:
    2022
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
  • 批准号:
    RGPIN-2019-06633
  • 财政年份:
    2022
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了