Rare-event simulation and analysis for elucidating mechanisms of development and disease
用于阐明发育和疾病机制的罕见事件模拟和分析
基本信息
- 批准号:10611995
- 负责人:
- 金额:$ 32.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:ActinsAlzheimer&aposs DiseaseAmyloid FibrilsAnteriorBindingBiologicalBiological ProcessCell ShapeComplementComputing MethodologiesCoupledCytoskeletal ModelingCytoskeletonDefectDevelopmentDevelopmental ProcessDiabetes MellitusDiseaseDrug KineticsEngineeringEquilibriumEventFeedbackGrainHealthImmunologicsIn VitroInsulinInsulin ReceptorKnowledgeLengthLifeMethodsMicroscopicMissionModelingModificationMolecularMonomeric GTP-Binding ProteinsNeurodegenerative DisordersNeuronsParkinson DiseasePatternPlayProcessPropertyRNA-Binding ProteinsReactionRefrigerationResearchResolutionRoleSignal TransductionSignaling MoleculeSpecific qualifier valueStructureTestingTherapeuticTherapeutic IndexTimeTissuesUnited States National Institutes of Healthamyloid formationanalogcostdesigndisabilityexperimental studyimprovedin vivoinsightmechanical forcepandemic diseasereceptorreceptor bindingself assemblysimulationstatisticssynaptogenesistumor growthwound healing
项目摘要
PROJECT SUMMARY. Molecular simulations complement experiments by revealing the microscopic dynamics
underlying biological mechanisms and the forces promoting those dynamics. However, most biological processes
involve time scales much longer than the time step of numerical integration. While there are many methods for
bridging this separation of time scales to obtain equilibrium averages, further advances are needed to robustly
estimate dynamical statistics. The proposed research seeks to develop general methods that can meet this need
and to apply them to elucidating self-assembly mechanisms at both molecular and cellular length scales.
Improving insulin therapies through rare-event analyses of short simulations. There is a pandemic in diabetes
mellitus, with tremendous cost worldwide. The main treatment is insulin therapy, but it has a narrow therapeutic
index, and its requirement for refrigerated transport and storage is prohibitively costly for much of the world.
Insulin analogs have been engineered to have specific pharmacokinetics based on knowledge of insulin self-
association, but an understanding of how insulin binds to the insulin receptor (IR) remains lacking. We seek to
develop computational methods that can enable simulation and analysis of coupled folding and binding reactions
and to combine these methods with recently obtained structures of IR bound to insulin and single-chain insulin
(SCI) analogs to elucidate the microscopic origins of observed therapeutic activities. The study can thus ultimately
lead to improved insulin therapies. We will also investigate the improved thermal properties of SCI analogs, in
particular, their reduced tendency to form amyloid fibrils. The study thus also promises to yield insights into
amyloid formation, with broad implications beyond insulin to neurodegenerative disorders like Parkinson's and
Alzheimer's diseases.
Modeling cytoskeletal processes leading to developmental patterning. Cytoskeletal dynamics underlie diverse
processes, including developmental patterning, neuronal synapse formation, immunological recognition, wound
healing, and tumor growth. These dynamics can be very hard to intuit because they involve balances of me-
chanical forces, mechanochemistry, network assembly and dissasembly, and feedback to and from cell signaling
molecules. Models thus play an important role in parsing contributing molecular processes and testing quanti-
tative hypotheses. We will adapt a recently parameterized cytoskeletal model that is quantitatively predictive in
vitro to elucidate mechanisms of developmental patterning in vivo. Namely, we will investigate how interactions
between the small GTPase RhoA and actin assembly/dissasembly control pulsatile contractility, a widespread
phenomenon that drives cortical flow, cell shape change, and tissue deformation. Then we will compare models
for the localization of the evolutionarily-conserved RNA-binding protein Staufen during anterior-posterior speci-
fication. In addition to aiding in understanding these key developmental processes, the simulations will yield a
model that can be used to study cytoskeletal dynamics in a broad range of contexts with minimal modification.
项目摘要。分子模拟通过揭示微观动力学来补充实验
潜在的生物机制和促进这些动力的力量。然而,大多数生物过程
涉及比数值积分的时间步长长得多的时间尺度。虽然有许多方法,
弥合这种时间尺度的分离,以获得均衡平均值,需要进一步的进展,
估计动态统计。拟议的研究旨在开发能够满足这一需求的通用方法
并将其应用于阐明分子和细胞长度尺度上的自组装机制。
通过短模拟的罕见事件分析改进胰岛素治疗。糖尿病是一种流行病
在全球范围内付出了巨大的代价。目前主要的治疗方法是胰岛素治疗,但其治疗范围较窄,
指数,其冷藏运输和储存的要求是令人望而却步的世界上大部分地区。
胰岛素类似物已被设计为具有特定的药代动力学,这是基于胰岛素自身代谢的知识。
胰岛素与胰岛素受体(IR)结合的机制尚不清楚,但对胰岛素如何与IR结合仍缺乏了解。我们寻求
开发能够模拟和分析耦合折叠和结合反应的计算方法
并将这些方法与最近获得的IR结合胰岛素和单链胰岛素的结构联合收割机结合
(SCI)类似物来阐明观察到的治疗活性的微观起源。这项研究最终可以
从而改善胰岛素治疗。我们还将研究SCI类似物的改进的热性能,
特别是,它们形成淀粉样纤维的倾向降低。因此,这项研究也有望深入了解
淀粉样蛋白的形成,具有广泛的意义,超越胰岛素的神经退行性疾病,如帕金森氏症,
老年痴呆症
模拟导致发育模式的细胞骨架过程。细胞骨架动力学是各种
过程,包括发育模式、神经元突触形成、免疫识别、创伤
愈合和肿瘤生长。这些动力学很难用直觉来理解,因为它们涉及到我的平衡-
机械力,机械化学,网络组装和dissasperation,以及反馈和来自细胞信号传导
分子。因此,模型在解析贡献分子过程和测试定量方面发挥着重要作用。
假设我们将采用一个最近参数化的细胞骨架模型,该模型在定量预测中
在体外阐明体内发育模式的机制。也就是说,我们将研究
在小GTdR RhoA和肌动蛋白组装/dissassports控制脉动收缩性之间,广泛的
这是一种驱动皮质流动、细胞形状改变和组织变形的现象。然后我们将比较模型
对于在前-后物种中进化保守的RNA结合蛋白Staufen的定位,
办公室。除了帮助理解这些关键的发展过程,模拟将产生一个
模型,可用于研究细胞骨架动力学在广泛的背景下,最小的修改。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Computing transition path theory quantities with trajectory stratification
- DOI:10.1063/5.0087058
- 发表时间:2022-07-21
- 期刊:
- 影响因子:4.4
- 作者:Vani, Bodhi P.;Weare, Jonathan;Dinner, Aaron R.
- 通讯作者:Dinner, Aaron R.
Predicting rare events using neural networks and short-trajectory data
- DOI:10.1016/j.jcp.2023.112152
- 发表时间:2022-08
- 期刊:
- 影响因子:4.1
- 作者:J. Strahan;J. Finkel;A. Dinner;J. Weare
- 通讯作者:J. Strahan;J. Finkel;A. Dinner;J. Weare
Long-Time-Scale Predictions from Short-Trajectory Data: A Benchmark Analysis of the Trp-Cage Miniprotein.
- DOI:10.1021/acs.jctc.0c00933
- 发表时间:2021-05-11
- 期刊:
- 影响因子:5.5
- 作者:Strahan J;Antoszewski A;Lorpaiboon C;Vani BP;Weare J;Dinner AR
- 通讯作者:Dinner AR
Understanding the sources of error in MBAR through asymptotic analysis
通过渐近分析了解 MBAR 的误差来源
- DOI:10.1063/5.0147243
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Li, Xiang Sherry;Van Koten, Brian;Dinner, Aaron R.;Thiede, Erik H.
- 通讯作者:Thiede, Erik H.
Augmented transition path theory for sequences of events
事件序列的增强转移路径理论
- DOI:10.1063/5.0098587
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Lorpaiboon, Chatipat;Weare, Jonathan;Dinner, Aaron R.
- 通讯作者:Dinner, Aaron R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Dinner其他文献
Aaron Dinner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Dinner', 18)}}的其他基金
Rare-event simulation and analysis for elucidating mechanisms of development and disease
用于阐明发育和疾病机制的罕见事件模拟和分析
- 批准号:
10396476 - 财政年份:2020
- 资助金额:
$ 32.96万 - 项目类别:
Robust rare event simulation for protein folding and disease-related aggregation
蛋白质折叠和疾病相关聚集的稳健罕见事件模拟
- 批准号:
9316663 - 财政年份:2013
- 资助金额:
$ 32.96万 - 项目类别: