Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
基本信息
- 批准号:10270784
- 负责人:
- 金额:$ 41.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:16S ribosomal RNA sequencingAccountingAddressAdmixtureAdverse drug eventAdverse eventAffectAfricanAfrican AmericanAlgorithmsAnticoagulantsAnticoagulationCYP2C9 geneCardiovascular DiseasesCharacteristicsClinic VisitsClinicalClinical ResearchCollectionDNADataData SetDevelopmentDiet RecordsDoseDrug PrescriptionsDrug ReceptorsEmergency SituationEnrollmentEnzymesEpigenetic ProcessEscherichia coliEuropeanFailureGenesGeneticGenotypeGuidelinesHispanicsHospitalizationHourIndividualInternationalInvestigationLatinoLinear RegressionsMachine LearningMeasuresMedical ResearchMissionModelingNative AmericansOralOutcomePatient Self-ReportPatientsPatternPharmaceutical PreparationsPharmacogeneticsPharmacogenomicsPopulationPopulation HeterogeneityPublic HealthRaceRandomized Controlled TrialsResearchResearch Project GrantsRoleSafetySamplingSourceTechniquesTestingTherapeuticTrainingUnited StatesUnited States National Institutes of HealthVariantVitamin KWarfarinWorkadverse drug reactionbacterial communitybacterial genome sequencingbasecohortdietarydisparity reductiongenome-widegut bacteriagut microbiomeimprovedmedically underservedmicrobial communitymicrobiomenovelpersonalized predictionsresponsesample collectionsupport vector machinetreatment disparity
项目摘要
ABSTRACT
Warfarin remains one of the most commonly prescribed drugs and a leading cause of emergency
hospitalizations. Warfarin use is especially common in medically underserved patients such as African
Americans (AAs) and Latinos, which is particularly concerning since AAs and Latinos suffer worse outcomes
due to suboptimal warfarin therapy. Thus AAs and Latinos can derive a distinct benefit from warfarin
pharmacogenomic (PGx) algorithms, which maximize safety and efficacy by predicting individualized warfarin
dose. However, currently available PGx algorithms have critical limitations, including a lack of generalizability to
non-white populations and a failure to account for 50 percent of variability in warfarin dose. Under-representation
in clinical studies, the propensity to cause adverse events, and a lack of consideration of admixed populations
in clinical PGx guidelines are all factors that contribute to limited utility of warfarin PGx algorithms in diverse
populations. Many potential sources of warfarin stable dose variability remain critically unexplored, including the
role of vitamin K biosynthesizing bacterial species, the influence of local ancestry at warfarin pharmacogenes,
and the potential for machine learning techniques to enable accurate warfarin dosing algorithms in diverse
populations. This proposal addresses the overarching hypothesis that warfarin stable dose prediction can be
improved by incorporation of gut microbiome data, measures of local ancestry, and machine learning in diverse
populations. We will pursue three Specific Aims (SAs) to test this hypothesis: (SA1) Determine the impact of
abundance of vitamin K biosynthesizing bacteria from the gut microbiome on warfarin stable dose and; (SA2)
Determine the influence of local admixture on warfarin stable dose in admixed populations; (SA3) Optimize
warfarin PGx algorithms for diverse populations using machine learning. In SA#1, we will conduct a clinical study
with fecal sample collection at anticoagulation clinic visits and perform whole genome bacterial sequencing to
identify the effect of vitamin K biosynthesizing bacterial species on warfarin stable dose. In SA#2, we will estimate
African, European, and Native American local ancestry in warfarin pharmacogenes in a large, admixed
population (n=1194) and determine its effects on warfarin stable dose. In SA#3, a large, diverse population of
warfarin treated patients (n=7366) will be used to develop machine learning models and test improved prediction
of warfarin stable dose over existing linear regression models. Our studies overcome major limitations of
previous warfarin PGx studies by leveraging gut microbiome data, local ancestry, machine learning, and diverse,
admixed populations. The outcomes of this work will provide a framework for local ancestry investigation with
other PGx drug-gene pairs, enabling use of clinical PGx guidelines in admixed populations. This research has
the potential to identify new sources of variability in warfarin dose, improve the safety and efficacy of warfarin
treatment, and reduce disparities in PGx research for medically underserved patients.
摘要
华法林仍然是最常用的处方药之一,也是导致紧急情况的主要原因
住院治疗。华法林的使用在非洲等医疗服务不足的患者中尤其常见。
美国人(AA)和拉丁裔,这一点特别令人担忧,因为AA和拉丁裔遭受的后果更糟
由于华法林治疗效果不佳。因此,AA和拉丁裔可以从华法林中获得明显的好处
药物基因组学(PGx)算法,通过预测个性化华法林来最大化安全性和有效性
剂量。然而,当前可用的PGx算法具有严重的局限性,包括缺乏对
非白人人群以及未能解释华法林剂量50%的变异性。代表不足
在临床研究中,导致不良事件的倾向,以及缺乏对混合人群的考虑
在临床上,PGx指南是导致华法林PGx算法在不同领域的应用受限的所有因素
人口。华法林稳定剂量可变性的许多潜在来源仍然严重未被探索,包括
维生素K生物合成菌种的作用,华法林产药菌本地血统的影响,
以及机器学习技术的潜力,使准确的华法林剂量算法在不同的
人口。这项建议解决了华法林稳定剂量预测可以
通过将肠道微生物组数据、当地血统测量和机器学习纳入不同领域进行了改进
人口。我们将追求三个特定目标(SA)来检验这一假设:(SA1)确定
华法林稳定剂量下肠道微生物群维生素K生物合成菌的丰度;(SA2)
确定局部混合对混合人群中华法林稳定剂量的影响;(SA3)优化
使用机器学习的不同种群的华法林PGx算法。在SA#1中,我们将进行临床研究
在抗凝门诊采集粪便样本,并进行全基因组细菌测序
确定维生素K生物合成菌种对华法林稳定剂量的影响。在SA#2中,我们将估计
华法林药原中的非洲人、欧洲人和美洲原住民的地方血统
人群(n=1194),确定其对华法林稳定剂量的影响。在SA#3,一个庞大的、多样化的人口
接受华法林治疗的患者(n=7366)将被用于开发机器学习模型和测试改进的预测
与现有的线性回归模型相比,华法林稳定剂量。我们的研究克服了以下主要限制
以前的华法林PGx研究利用肠道微生物组数据、当地血统、机器学习和多样性,
混杂种群。这项工作的成果将为当地的祖先调查提供一个框架
其他PGx药物-基因对,使临床PGx指南能够在混合人群中使用。这项研究已经
找出华法林剂量变异的新来源,提高华法林的安全性和有效性
治疗,并减少医疗服务不足患者在PGx研究方面的差异。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Hansen Karnes其他文献
Jason Hansen Karnes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Hansen Karnes', 18)}}的其他基金
Precision Medicine for All of Us Researchers Collective Medicina de Precision: Colectivo de Investigadores Salud para Todos
为我们所有研究人员提供的精准医学 Collective Medicina de Precision: Colectivo de Investigadores Salud para Todos
- 批准号:
10891233 - 财政年份:2023
- 资助金额:
$ 41.91万 - 项目类别:
Discovery of Immunogenomic Associations with Disease and Differential Risk Across Diverse Populations
发现免疫基因组与不同人群的疾病和差异风险的关联
- 批准号:
10796657 - 财政年份:2023
- 资助金额:
$ 41.91万 - 项目类别:
Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
- 批准号:
10656719 - 财政年份:2022
- 资助金额:
$ 41.91万 - 项目类别:
ABO and Immunogenetic Variation in the Pathogenesis of Heparin-Induced Thrombocytopenia
肝素诱导的血小板减少症发病机制中的 ABO 和免疫遗传学变异
- 批准号:
10653005 - 财政年份:2022
- 资助金额:
$ 41.91万 - 项目类别:
ABO and Immunogenetic Variation in the Pathogenesis of Heparin-Induced Thrombocytopenia
肝素诱导的血小板减少症发病机制中的 ABO 和免疫遗传学变异
- 批准号:
10439313 - 财政年份:2022
- 资助金额:
$ 41.91万 - 项目类别:
Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
- 批准号:
10454235 - 财政年份:2021
- 资助金额:
$ 41.91万 - 项目类别:
Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
- 批准号:
10626114 - 财政年份:2021
- 资助金额:
$ 41.91万 - 项目类别:
Genomic and Transcriptomic Influences on Heparin-Induced Thrombocytopenia
基因组和转录组对肝素诱导的血小板减少症的影响
- 批准号:
10379303 - 财政年份:2019
- 资助金额:
$ 41.91万 - 项目类别:
Genomic and Transcriptomic Influences on Heparin-Induced Thrombocytopenia
基因组和转录组对肝素诱导的血小板减少症的影响
- 批准号:
9899307 - 财政年份:2019
- 资助金额:
$ 41.91万 - 项目类别:
相似海外基金
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 41.91万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
- 批准号:
10100360 - 财政年份:2024
- 资助金额:
$ 41.91万 - 项目类别:
Collaborative R&D
Accounting for the Fall of Silver? Western exchange banking practice, 1870-1910
白银下跌的原因是什么?
- 批准号:
24K04974 - 财政年份:2024
- 资助金额:
$ 41.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
- 批准号:
23K01686 - 财政年份:2023
- 资助金额:
$ 41.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An empirical and theoretical study of the double-accounting system in 19th-century American and British public utility companies
19世纪美国和英国公用事业公司双重会计制度的实证和理论研究
- 批准号:
23K01692 - 财政年份:2023
- 资助金额:
$ 41.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Empirical Analysis of the Value Effect: An Accounting Viewpoint
价值效应的实证分析:会计观点
- 批准号:
23K01695 - 财政年份:2023
- 资助金额:
$ 41.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accounting model for improving performance on the health and productivity management
提高健康和生产力管理绩效的会计模型
- 批准号:
23K01713 - 财政年份:2023
- 资助金额:
$ 41.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
- 批准号:
2312319 - 财政年份:2023
- 资助金额:
$ 41.91万 - 项目类别:
Standard Grant
New Role of Not-for-Profit Entities and Their Accounting Standards to Be Unified
非营利实体的新角色及其会计准则将统一
- 批准号:
23K01715 - 财政年份:2023
- 资助金额:
$ 41.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
$ 41.91万 - 项目类别: