Comprehensive dissection of the CLL genome & phenome to improve patient outcomes
CLL 基因组的全面剖析
基本信息
- 批准号:10270036
- 负责人:
- 金额:$ 166.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsApoptosisAreaB-LymphocytesBiologicalBiological AssayBiologyBiometryCell DeathCell TherapyCell physiologyCellsChronic CareChronic Lymphocytic LeukemiaClinicalClustered Regularly Interspaced Short Palindromic RepeatsCombined Modality TherapyComplicationComputer AnalysisDNADataData SetDetectionDiagnosisDiagnosticDiseaseDisease remissionDissectionEpigenetic ProcessEvaluationExposure toFundingGene Expression ProfileGeneticGenomeGenomicsGoalsHeterogeneityImmuno-ChemotherapyImmunotherapeutic agentIndividualInstitutesInternationalKineticsLeadLinkLymphomaMalignant NeoplasmsMapsModernizationMolecularMonitorMusNon-Invasive Cancer DetectionOutcomePathologyPathway interactionsPatient-Focused OutcomesPatientsPatternPharmaceutical PreparationsPhenotypePhysical shapePrediction of Response to TherapyPredispositionProteinsProteomicsRNARefractoryResearchResistanceResourcesRichter&aposs SyndromeSamplingSpecimenSystemTherapeuticVisionaccurate diagnosisanti-PD1 therapybasebehavioral phenotypingcancer cellcell behaviorcell free DNAchemotherapyclinical careclinical investigationcombinatorialcurative treatmentsdesigndisease classificationdisorder subtypeeffective therapyepigenomicsgenome editinghuman diseaseimmunoregulationimprovedin vivoindividual patientindividualized medicineinterdisciplinary approachmethylomemolecular phenotypemolecular subtypesmouse modelmultidisciplinarynext generationnovelnovel therapeuticspersonalized approachphase I trialphenomeprogramsresponsesample collectionsmall moleculesmall molecule librariestargeted agenttherapy resistanttranscriptomicstreatment responsetumor
项目摘要
OVERALL ABSTRACT
Although we have made great strides in our understanding of the biology and treatment of chronic lymphocytic
leukemia (CLL) over the past decade, Richter's syndrome (RS) or the transformation of CLL to aggressive
lymphoma remains an area of unmet need in the clinical care of CLL patients. The challenges presented by RS
mandate large-scale interdisciplinary approaches to more completely link genomic and protein-level features
with cellular behavior so that more precise and sensitive molecular-based diagnostic schema and more effective
treatments for this devastating disease can be devised. Our hypothesis is that genomic and epigenomic
alterations define the trajectory from CLL to RS and that distinct subtypes of RS exist, leading to distinct
phenotypic behaviors. Our approach to address the challenge of understanding RS builds from the strengths
of our highly interactive and multi-disciplinary program in CLL research. Over the last funding period, we have
succeeded in generating the largest CLL `map' to date, integrating genetic, transcriptomic and methylome data
with clinical annotation from over 1000 CLL samples to discover clinically meaningful subtypes of disease and
novel driver alterations. From this information, we have also generated genetically-faithful CLL mouse models
reflective of human disease, defined patterns of disease kinetics and therapeutic resistance, and identified new
therapeutic vulnerabilities. Over the next 5 years, we will leverage the new resources generated by our Program,
ranging from computational to functional, genetic and phenotypic readouts, to confront the challenge of
understanding and addressing RS. Thus, our vision is that we will enact a precision approach for
understanding the distinct biology of disease transformation and the subtypes of disease, and perform functional
analyses of responses to small molecules and immunotherapy agents, that could be integrated and lead to a
paradigm shift in the detection and treatment for this disease. These highly translational initiatives are strongly
supported by the expertise of the Core Leaders. Our overarching goal is thus to revolutionize the clinical
outcomes of patients with this devastating disease and to utilize the information discovered from this Program to
motivate the rational design of the next generation of personalized and even curative therapies for RS.
总体摘要
尽管我们在了解慢性淋巴细胞性疾病的生物学和治疗方面取得了长足的进步,
在过去的十年中,白血病(CLL),里希特综合征(RS)或CLL向侵袭性白血病的转化
淋巴瘤仍然是CLL患者临床护理中未满足需求的领域。RS带来的挑战
要求采用大规模跨学科的方法,将基因组和蛋白质水平的特征更完整地联系起来
与细胞的行为,使更精确和敏感的分子为基础的诊断模式,更有效的
可以设计出治疗这种毁灭性疾病的方法。我们的假设是基因组和表观基因组
改变定义了从CLL到RS的轨迹,并且存在不同的RS亚型,导致不同的
表型行为我们应对理解RS挑战的方法建立在
我们在CLL研究中高度互动和多学科的计划。在上一个融资期,我们
成功地生成了迄今为止最大的CLL“图谱”,整合了遗传、转录组和甲基化组数据
从超过1000个CLL样本中进行临床注释,以发现有临床意义的疾病亚型,
新的驱动程序更改。根据这些信息,我们还生成了遗传上忠实的CLL小鼠模型
反映了人类疾病,确定了疾病动力学和治疗耐药性的模式,并确定了新的
治疗脆弱性在接下来的5年里,我们将利用我们的计划产生的新资源,
从计算到功能,遗传和表型读数,以应对挑战,
理解和处理RS。因此,我们的愿景是,我们将制定一个精确的方法,
了解疾病转化的独特生物学和疾病的亚型,并执行功能
分析对小分子和免疫治疗剂的反应,可以整合并导致
这种疾病的检测和治疗模式的转变。这些高度转化的举措,
由核心领导人的专业知识支持。因此,我们的首要目标是彻底改变临床
这种毁灭性疾病的患者的结果,并利用从该计划中发现的信息,
激励下一代RS个性化甚至治愈性疗法的合理设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Catherine Ju-Ying Wu其他文献
Catherine Ju-Ying Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Catherine Ju-Ying Wu', 18)}}的其他基金
Defining the impact of mutational drivers on the immune microenvironment of CLL
定义突变驱动因素对 CLL 免疫微环境的影响
- 批准号:
10357003 - 财政年份:2022
- 资助金额:
$ 166.79万 - 项目类别:
Defining the impact of mutational drivers on the immune microenvironment of CLL
定义突变驱动因素对 CLL 免疫微环境的影响
- 批准号:
10558675 - 财政年份:2022
- 资助金额:
$ 166.79万 - 项目类别:
Antigenic basis of immune responses after immune modulatory therapies post-HCT
HCT 后免疫调节治疗后免疫反应的抗原基础
- 批准号:
10218090 - 财政年份:2019
- 资助金额:
$ 166.79万 - 项目类别:
Antigenic basis of immune responses after immune modulatory therapies post-HCT
HCT 后免疫调节治疗后免疫反应的抗原基础
- 批准号:
10465094 - 财政年份:2019
- 资助金额:
$ 166.79万 - 项目类别:
Defining the determinants of response and resistance to therapy for Richter's Syndrome
定义里氏综合症治疗反应和耐药的决定因素
- 批准号:
10491142 - 财政年份:2016
- 资助金额:
$ 166.79万 - 项目类别:
Comprehensive dissection of the CLL genome and phenome to improve patient outcomes
全面剖析 CLL 基因组和表型组以改善患者预后
- 批准号:
9548911 - 财政年份:2016
- 资助金额:
$ 166.79万 - 项目类别:
Defining the determinants of response and resistance to therapy for Richter's Syndrome
定义里氏综合症治疗反应和耐药的决定因素
- 批准号:
10270038 - 财政年份:2016
- 资助金额:
$ 166.79万 - 项目类别:
Comprehensive dissection of the CLL genome and phenome to improve patient outcomes
全面剖析 CLL 基因组和表型组以改善患者预后
- 批准号:
9149996 - 财政年份:2016
- 资助金额:
$ 166.79万 - 项目类别:
Comprehensive dissection of the CLL genome and phenome to improve patient outcomes
全面剖析 CLL 基因组和表型组以改善患者预后
- 批准号:
9445777 - 财政年份:2016
- 资助金额:
$ 166.79万 - 项目类别:
CLL clonal evolution and the development of therapy-driven resistance
CLL 克隆进化和治疗驱动耐药性的发展
- 批准号:
10005158 - 财政年份:2016
- 资助金额:
$ 166.79万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 166.79万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 166.79万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 166.79万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 166.79万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 166.79万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 166.79万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 166.79万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 166.79万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 166.79万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 166.79万 - 项目类别:
Research Grant