Illuminating Old Catalysts for the Synthesis of Anti-infective HIV Peptides
阐明用于合成抗感染艾滋病毒肽的旧催化剂
基本信息
- 批准号:10270506
- 负责人:
- 金额:$ 21.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-15 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:Acquired Immunodeficiency SyndromeActive SitesAddressAffinityAmino AcidsAnimalsAnti-HIV AgentsAnti-Infective AgentsAnti-Retroviral AgentsAntigensBindingBiochemicalBiological AvailabilityBiological ProductsBiologyCD4 Positive T LymphocytesCapsidCationsCellsChemicalsCollaborationsCommunicable DiseasesComplexComputer ModelsComputer softwareComputing MethodologiesDevelopmentDiagnosisDiseaseDoseDrug resistanceEarly treatmentEnvironmental Risk FactorEnzyme Inhibitor DrugsEvaluationGoalsGuanineHIVHIV InfectionsHIV-1HIV-1 proteaseIn VitroIndividualInfectionInterruptionJurkat CellsLaboratoriesLeadLengthLeukocytesLifeLife Cycle StagesMetabolicMethodsMindModelingMutationNucleocapsidNucleocapsid ProteinsOutcomes ResearchPeptidesPersonsPharmaceutical PreparationsPharmacotherapyPopulationProcessProductionPropertyProtease InhibitorProtein PrecursorsProteinsProteolysisPublic HealthRNARNA BindingReportingRoleSERPINA4 geneSamplingSavingsSeriesSideStructureStructure-Activity RelationshipSynthesis ChemistryTestingTherapeuticToxic effectTreatment FailureVaccinesVariantViralViral GenomeViral Load resultVirionVirusVirus ReplicationZinc Fingersanalogantiretroviral therapyassay developmentbasecatalystcellular targetingcombatcompliance behaviordrug candidatedrug developmentimprovedin silicoinhibitor/antagonistinnovationinsightnext generationnovel therapeuticspandemic diseaseparticleprotein complexrecruitresearch clinical testingresistant strainstemvirtualvirtual model
项目摘要
PROJECT SUMMARY
Since its first recognition in the early 1980s, HIV has claimed more than 32 million lives worldwide. Before
the introduction of antiretroviral therapy in the 1990s, an individual infected with HIV could progress to AIDS
the most advanced stage of HIV infection, and the deadliest (~11-month survival after diagnosis)very quickly.
But today, with early treatment, a person diagnosed with HIV can live nearly as long as someone without the
disease. Unfortunately, there is no cure for HIV. More troubling, the current repertoire of life-saving antiretroviral
drugs that keep the HIV infection in check are losing their hold over the infection. In the last decade, poor patient
compliance (skipping daily antiretroviral doses) combined with environmental factors have led to mutations in
the HIV virus that lead to drug-resistant strains. Now more than ever, new therapies that attack new viral targets
are desperately needed to combat the global HIV pandemic.
Like all viruses, the life-cycle of HIV-1 relies on host cell machinery. The virus infects CD4+ T-lymphocytes
(a specific population of white blood cells) and uses the cell to replicate the viral genome, assemble new virus
particles, and unleash copies of the virus to infect more CD4+ T-lymphocytes. The formation of new virus
particles can only occur if the viral RNA is identified among the vast array of other RNAs within the cell and
successfully recruited to the Gag complex. This essential recognition and recruitment process is accomplished
entirely by the Gag-nucleocapsid protein (NCp7). In brief, the nucleocapsid identifies a conserved region of viral
RNA (known as RNA), located on stem loop 3 (SL3) of the viral RNA strand and then helps to package the
collected RNA strands into a new virus particle. If this assembly process is interrupted, the virus will be unable
to produce replication competent virions and to exit the host cell, thereby inhibiting the final stages of viral
replication. Those considerations in mind, the SL3RNA-NCp7 complex has become a prime target for next-
generation antiretrovirals.
The quest for molecules which selectively inhibit the SL3RNA-NCp7 interaction has followed several lines
of approach. One promising avenue has been to use peptides. To this end, a synthetic hexapeptide (HKWPWW;
HP1) was recently described that showed high affinity for the SL3 tetraloop of RNA, disrupting the binding of
NCp7 and causing inhibition of HIV-1 replication in vitro. While a promising lead for drug development, the
mechanism by which HP1 recognizes and binds to SL3-RNA is still ill-defined. Our goals will be to interrogate
the structure activity relationships for HP1 binding to RNA using high-throughput amino acid diversification
(substituting key residues in HP1 for non-proteinogenic variants) in tandem with in silico modeling. From these
insights, structural optimization of HP1 to enhance its binding affinity to RNA will be explored as a contemporary
strategy to develop a new class of inhibitors of HIV-1 replication.
项目总结
自20世纪80年代初首次被发现以来,艾滋病毒已在全球夺走了3200多万人的生命。在此之前
20世纪90年代引入抗逆转录病毒疗法后,感染艾滋病毒的个人可能进展为艾滋病
艾滋病毒感染的最晚期,以及最致命的(确诊后存活约11个月)非常快。
但今天,通过早期治疗,被诊断出感染艾滋病毒的人几乎可以和没有感染艾滋病毒的人一样长寿。
疾病。不幸的是,艾滋病毒是无法治愈的。更令人不安的是,目前救命的抗逆转录病毒药物
控制艾滋病毒感染的药物正在失去对感染的控制。在过去的十年里,可怜的病人
依从性(跳过每天的抗逆转录病毒剂量)与环境因素相结合,导致了
导致抗药性菌株的HIV病毒。现在比以往任何时候都更多的是攻击新的病毒目标的新疗法
是抗击全球艾滋病毒大流行的迫切需要。
像所有病毒一样,HIV-1的生命周期依赖于宿主细胞机制。该病毒感染CD4+T淋巴细胞
(一组特定的白细胞),并使用该细胞复制病毒基因组,组装新病毒
颗粒,并释放病毒的副本,感染更多的CD4+T淋巴细胞。新病毒的形成
只有在细胞内大量的其他RNA中发现了病毒RNA,并且
成功地被招募到恶作剧情结。这一重要的认可和招聘过程已经完成。
完全由Gag-核衣壳蛋白(NCp7)决定。简而言之,核衣壳识别病毒的保守区域。
核糖核酸(称为SL3RNA),位于病毒链的茎环3(SL3)上,然后帮助包装
收集的核糖核糖核酸链形成新的病毒颗粒。如果此组装过程中断,病毒将无法
产生复制能力强的病毒粒子并离开宿主细胞,从而抑制病毒的最后阶段
复制。考虑到这些考虑,SL3NCP7RNA-NCp7复合体已成为下一步-
新一代抗逆转录病毒药物。
寻找选择性地抑制SL3NCP7相互作用的分子遵循了几条路线
接近的方式。一种很有希望的方法是使用多肽。为此,合成了六肽(HKWPWW;
Hp1)最近被描述为与RNA的SL3四环具有高亲和力,破坏了
NCp7,并在体外抑制HIV-1的复制。虽然这是药物开发的一个有希望的领先者,但
Hp1识别和结合sL3-核糖核酸的机制仍不明确。我们的目标是审问
高通量氨基酸多样化方法研究Hp1与核糖核酸结合的构效关系
(将HP1中的关键残基替换为非蛋白产生的变体),同时进行计算机建模。从这些
洞察,优化HP1的结构以增强其与RNA的结合亲和力将作为当代的
开发一类新的HIV-1复制抑制剂的战略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Bloom其他文献
Steven Bloom的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Bloom', 18)}}的其他基金
New catalytic strategies to make non-proteinogenic peptides
制造非蛋白肽的新催化策略
- 批准号:
10673741 - 财政年份:2022
- 资助金额:
$ 21.21万 - 项目类别:
New catalytic strategies to make non-proteinogenic peptides
制造非蛋白肽的新催化策略
- 批准号:
10501950 - 财政年份:2022
- 资助金额:
$ 21.21万 - 项目类别:
Illuminating Old Catalysts for the Synthesis of Anti-infective HIV Peptides
阐明用于合成抗感染艾滋病毒肽的旧催化剂
- 批准号:
10460252 - 财政年份:2016
- 资助金额:
$ 21.21万 - 项目类别:
Illuminating Old Catalysts for the Synthesis of Anti-infective HIV Peptides
阐明用于合成抗感染艾滋病毒肽的旧催化剂
- 批准号:
10664159 - 财政年份:2016
- 资助金额:
$ 21.21万 - 项目类别:
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 21.21万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 21.21万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 21.21万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 21.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 21.21万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 21.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 21.21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 21.21万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 21.21万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 21.21万 - 项目类别:
Discovery Grants Program - Individual