Navigational learning and memory: Cognitive graphs, active decision making, and brain network dynamics
导航学习和记忆:认知图、主动决策和大脑网络动力学
基本信息
- 批准号:10579925
- 负责人:
- 金额:$ 52.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAnimal ModelAreaAttention deficit hyperactivity disorderBasic ScienceBehaviorBehavioralBrainBrain imagingClinicalCognitiveCommunicationCommunitiesComplexCorpus striatum structureDangerousnessDecision MakingDiseaseDisorientationDrug AddictionEnvironmentEpisodic memoryFunctional Magnetic Resonance ImagingFunctional disorderGoalsGraphHippocampusHomeHumanIntuitionInvestigationKnowledgeLearningLinkLocationMajor Depressive DisorderMapsMedialMemoryMental DepressionMental disordersMethodsModelingModeling of Functional InteractionsObsessive-Compulsive DisorderOrganismOutcomeParkinson DiseasePathway interactionsPatternPeripheralPersonsPopulationProcessPsychological reinforcementResearchResearch ProposalsResourcesRewardsRiskRouteStructureSubwaySurveysTechniquesTemporal LobeTestingTheoretical modelTimecomparativecomputational basiseducational atmosphereentorhinal cortexexperiencegraph learninginsightinterestknowledge graphmembernetwork modelsneuralnovelspatial memorysupport networkvirtual realityway findingyoung adult
项目摘要
PROJECT SUMMARY/ABSTRACT
Learning and remembering the locations of resources while avoiding dangerous locations is a major challenge
for complex organisms. Although the neural representations of known environments have been well studied,
comparatively little is known about how that spatial knowledge is acquired in the first place. Here, we address
the important problem of how people learn and remember new environments. In particular, we aim to
investigate a fundamental type of spatial knowledge, the path connections between locations (‘graph
knowledge’). A topological graph consists of place nodes linked by path edges which could generate routes,
but without exact metric distances and angles, like a subway map. When it comes to learning spatial
knowledge, it seems intuitive that active navigation should facilitate, however, we do not yet understand the
mechanisms behind this advantage. Our overarching hypothesis is that interactions of a prefrontal-
hippocampal-striatal (PHS) circuit support graph learning, particularly during active decision making about
exploration. Combined with decision making and reinforcement learning mechanisms, the PHS pathway is
hypothesized to facilitate memory during learning. Based on this model, interactions and functional
communication within the PHS circuit are critical to new learning. The goals of this fundamental basic research
proposal are to 1) determine the trajectory of navigational learning, including both behavioral and brain network
dynamics, 2) identify the underlying brain mechanisms behind active decision making during graph learning,
and 3) answer fundamental questions about the relationship between decision making and memory. In
Specific Aim 1, we will determine exploration behaviors that facilitate graph learning. We will compare a
variety of graph structures, environmental openness, and scale to determine the robustness of graph learning.
In Specific Aim 2, we will use novel fMRI methods to examine changes in the formation of cohesive groups of
brain areas (‘communities’), harnessing the dynamics of learning. We will use this technique to identify brain
networks supporting active compared to passive learning. In Specific Aim 3, we will compare the brain
networks found in graph learning with those in non-spatial and non-Euclidean graphs. These studies will test
for brain networks common across different types of graphs, as well as those unique to spatial graphs. The
outcomes will provide insights into fundamental processes of navigation, learning, and memory, and will help
answer questions about learning beyond the realm of navigation. The PHS circuit is relevant to mental
disorders involving reinforcement and reward learning, including OCD, depression, and Parkinson’s Disease.
These studies will establish a vital link between spatial navigation and the PHS circuit, and will form the basis
for computational approaches to navigation, learning, memory, and breakdowns of the PHS circuit. The far-
reaching impact of this research includes assessing the function and dysfunction of this circuit in clinical
populations to better understand disease mechanisms.
项目总结/摘要
学习和记住资源的位置,同时避免危险的位置是一个重大的挑战
复杂的有机体。虽然已知环境的神经表征已经得到了很好的研究,
相对而言,人们对空间知识最初是如何获得的知之甚少。在这里,我们解决
人们如何学习和记忆新环境的重要问题。特别是,我们的目标是
研究一种基本类型的空间知识,位置之间的路径连接(“图
知识”)。拓扑图由通过路径边连接的地点节点组成,这些节点可以生成路径,
但没有精确的度量距离和角度,就像地铁地图一样。在学习空间时,
知识,这似乎是直观的,积极的导航应该促进,但是,我们还不明白,
这一优势背后的机制。我们首要的假设是前额叶-
海马-纹状体(PHS)回路支持图形学习,特别是在主动决策时,
探索结合决策和强化学习机制,PHS途径是
在学习过程中促进记忆。基于这个模型,交互和功能
PHS电路内的通信对新的学习至关重要。这项基础研究的目标
建议是1)确定导航学习的轨迹,包括行为和大脑网络
动力学,2)识别图形学习期间主动决策背后的潜在大脑机制,
3)回答关于决策和记忆之间关系的基本问题。在
具体目标1,我们将确定促进图学习的探索行为。我们将比较一个
图结构的多样性、环境的开放性和规模决定了图学习的鲁棒性。
在具体目标2中,我们将使用新的功能磁共振成像方法来检查内聚基团形成的变化,
大脑区域(“社区”),利用学习的动力。我们将用这项技术来识别大脑
与被动学习相比,网络支持主动学习。在具体目标3中,我们将比较大脑
图学习中发现的网络与非空间和非欧几里德图中的网络。这些研究将测试
对于不同类型的图中常见的大脑网络,以及空间图中特有的大脑网络。的
结果将提供对导航,学习和记忆的基本过程的见解,并将有助于
回答有关学习导航领域以外的问题。PHS电路与心理相关
涉及强化和奖励学习的疾病,包括强迫症、抑郁症和帕金森病。
这些研究将在空间导航和PHS电路之间建立一个重要的联系,并将构成
用于导航、学习、记忆和PHS电路故障的计算方法。远-
本研究的影响包括评估该回路在临床中的功能和功能障碍,
以更好地了解疾病机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizabeth Chrastil其他文献
Elizabeth Chrastil的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizabeth Chrastil', 18)}}的其他基金
CRCNS: There and Back Again Linking Global Maps to First-Person Perspectives
CRCNS:将全球地图与第一人称视角联系起来
- 批准号:
10831113 - 财政年份:2023
- 资助金额:
$ 52.25万 - 项目类别:
Navigational learning and memory: Cognitive graphs, active decision making, and brain network dynamics
导航学习和记忆:认知图、主动决策和大脑网络动力学
- 批准号:
10367112 - 财政年份:2022
- 资助金额:
$ 52.25万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 52.25万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 52.25万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 52.25万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 52.25万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 52.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 52.25万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 52.25万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 52.25万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 52.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 52.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists