Stratification of Pancreatic Cancer Subpopulations for Effective Immunotherapy
胰腺癌亚群分层以实现有效的免疫治疗
基本信息
- 批准号:10579214
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:Animal ModelBiological MarkersCellsClassificationCombined Modality TherapyComplexDataDatabasesEpigenetic ProcessFOXP3 geneGene ExpressionGeneral PopulationGenomicsHeterogeneityHumanImmuneImmune checkpoint inhibitorImmunotherapyIndividualInfiltrationMalignant NeoplasmsMalignant neoplasm of pancreasMethodsModelingMolecularNaturePancreatic Ductal AdenocarcinomaPatientsPatternResearch PersonnelReverse Transcriptase Polymerase Chain ReactionRiskSamplingSpecimenStratificationSubgroupSystemTestingThe Cancer Genome AtlasTissuesTumor SubtypeVaccinationVaccinesVariantVeteransVirus-like particleanti-PD1 antibodiescancer cellcancer immunotherapeuticscancer immunotherapycell typecohorteffective therapyefficacy evaluationepigenomicsfallsgenome sequencinghumanized mouseimmunogenicimproved outcomeinfancyinnovationmesothelinmouse modelnano-stringnovelpatient responsepatient stratificationpersonalized immunotherapypre-clinicalpreclinical evaluationresponseside effectspecific biomarkerstherapeutic evaluationtreatment responsetumortumor xenografttumor-immune system interactionsvaccine efficacyvaccine responsewhole genome
项目摘要
As the risk for pancreatic ductal adenocarcinoma (PDAC) has increased to a higher rate
in veterans relative to that in the general population, there is an urgent need to develop effective
therapies to treat PDAC for veterans in the VA system. Recently, cancer immunotherapy has
shown great promise in several cancers, but not in PDAC. Part of the reason for this is the
heterogeneity of PDAC and lack of tailoring of immunotherapy to individual tumor subtypes.
PDAC patient stratification for therapy remains in its infancy, and a reliable method to
deconvolute complex tumor composition to stratify PDAC subtypes has not been recognized.
Recently, we participated in whole genome sequencing of PDAC specimens, which provides the
basis for classifying PDAC into four subtypes based upon patterns of genomic structural
variation (Nature, 2016). Among these, the immunogenic subtype accounts for 30% of 178
PDAC samples in the TCGA database and is characterized by upregulated immune cell
networks, which could indicate differential responses to immunotherapy. In addition, the
Epigenomic Deconvolution (EDec) method, first developed by our co-investigator Dr.
Milosavljevic’s group, provides valuable information about cell type composition of tumors and
cell-type specific gene expression (Cell Rep. 2016). When applied to immunogenic subtype
PDAC tumors, EDec reveals an immunosuppressive microenvironment characterized by the
highest Foxp3 expression among all four subtypes. Cancer cells falling into the immunogenic
subtype also show the highest mesothelin (MSLN) expression. Therefore, we hypothesize that
PDACs with an immunogenic profile could be a target subgroup that is responsive to
immunotherapy either by MSLN virus-like particle (VLP) vaccination or combination therapy of
VLPs and an immune checkpoint inhibitor. We will test our hypothesis in pre-clinical animal
models that best recapitulate human PDAC patient’s response to immunotherapy, including
patient-derived tumor xenografts (PDX) and humanized mouse models. Our preliminary data
have shown that our anti-MSLN VLP vaccine is effective against MSLN-high expressing PDX in
a humanized NSG mouse model (PDX-hu-NSG). Based on our strong preliminary results, we
propose to develop an effective cancer immunotherapeutic approach by combining three highly
synergistic innovations: (1) A novel epigenetic deconvolution method to stratify PDAC tumors;
(2) PDX-hu-NSG models; and (3) Combination therapy of MSLN-VLP vaccine plus anti-PD-1
antibody. We propose two specific aims. In Aim 1, we will determine whether the immunogenic
subtype of PDAC is responsive to MSLN-VLP vaccine in PDX-hu-NSG model. Here, we will
use EDec method to stratify VA PDACs by subtype and then determine MSLN-VLP vaccine
efficacy in specific PDAC subgroups in humanized PDX mouse model. In Aim 2, we will
determine whether combination therapy with anti-PD-1 Ab enhances MSLN VLP vaccine
responses and efficacy in onco-humice model. We will also determine specific tumor infiltrating
subset of cells that are responsible for the effective combination therapy. Furthermore, potential
side-effect of the combination therapy will also be evaluated. Our findings will provide preclinical
evaluation of the therapeutic efficacy of an innovative precision immunotherapy for PDAC in
humanized mice without putting patients at risk. The project will provide understanding of
molecular, cellular, and tissue-level responses to therapy, a key step towards improved
outcomes in PDAC through patient stratification for therapy.
由于胰腺导管腺癌(PDAC)的风险增加到更高的比率,
在退伍军人相对于一般人群,迫切需要制定有效的
治疗退伍军人系统中的退伍军人PDAC的疗法。最近,癌症免疫疗法
在几种癌症中显示出很大的希望,但在PDAC中没有。部分原因是
PDAC的异质性和缺乏针对个体肿瘤亚型的免疫疗法的定制。
用于治疗的PDAC患者分层仍处于起步阶段,
还没有认识到去卷积复杂肿瘤组成对PDAC亚型的分层。
最近,我们参与了PDAC标本的全基因组测序,
根据基因组结构模式将PDAC分为四种亚型的基础
变异(Nature,2016)。其中,免疫原性亚型占178例中的30
PDAC样本在TCGA数据库中,其特征在于上调的免疫细胞
网络,这可能表明对免疫疗法的不同反应。此外该
表观基因组解卷积(EDec)方法,首先由我们的共同研究者博士。
Milosavljevic的小组提供了关于肿瘤细胞类型组成的有价值的信息,
细胞类型特异性基因表达(Cell Rep. 2016)。当应用于免疫原性亚型时
PDAC肿瘤,EDec揭示了一种免疫抑制微环境,其特征在于
Foxp 3在所有四种亚型中表达最高。癌细胞落入免疫原性
亚型也显示最高的间皮素(MSLN)表达。因此,我们假设
具有免疫原性特征的PDAC可能是对免疫原性应答的靶亚组。
通过MSLN病毒样颗粒(VLP)疫苗接种的免疫疗法或
VLP和免疫检查点抑制剂。我们将在临床前动物中测试我们的假设
最能概括人类PDAC患者对免疫疗法的反应的模型,包括
患者来源的肿瘤异种移植物(PDX)和人源化小鼠模型。我们的初步数据
已经表明我们的抗MSLN VLP疫苗在以下情况下对MSLN高表达PDX是有效的:
人源化NSG小鼠模型(PDX-hu-NSG)。根据我们的初步结果,我们
建议通过结合三种高度免疫治疗方法来开发有效的癌症免疫治疗方法
协同创新:(1)一种新的表观遗传去卷积方法来分层PDAC肿瘤;
(2)(3)MSLN-VLP疫苗加抗PD-1的联合治疗
抗体的我们提出两个具体目标。在目标1中,我们将确定免疫原性
PDAC亚型在PDX-hu-NSG模型中对MSLN-VLP疫苗应答。在这里,我们将
用EDec方法按亚型对VA PDAC进行分层,然后确定MSLN-VLP疫苗
在人源化PDX小鼠模型中的特定PDAC亚组中的功效。在目标2中,我们将
确定与抗PD-1 Ab的联合治疗是否增强MSLN VLP疫苗
在癌腐殖酸模型中的反应和功效。我们还将确定特定的肿瘤浸润
这些细胞是负责有效组合疗法的细胞亚群。此外,潜在
还将评估联合治疗的副作用。我们的发现将提供临床前
评估PDAC的创新精确免疫疗法的治疗效果
人源化小鼠,而不会使患者处于危险之中。该项目将提供了解
分子、细胞和组织水平的治疗反应,这是改善
通过患者分层进行治疗的PDAC结局。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qizhi C. Yao其他文献
Qizhi C. Yao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qizhi C. Yao', 18)}}的其他基金
Stratification of Pancreatic Cancer Subpopulations for Effective Immunotherapy
胰腺癌亚群分层以实现有效的免疫治疗
- 批准号:
10390279 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Stratification of Pancreatic Cancer Subpopulations for Effective Immunotherapy
胰腺癌亚群分层以实现有效的免疫治疗
- 批准号:
10041691 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Stratification of Pancreatic Cancer Subpopulations for Effective Immunotherapy
胰腺癌亚群分层以实现有效的免疫治疗
- 批准号:
9780735 - 财政年份:2020
- 资助金额:
-- - 项目类别:
A novel miR-198 replacement therapy for pancreatic cancer
一种治疗胰腺癌的新型 miR-198 替代疗法
- 批准号:
9004611 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Chimeric SHIV VLP as an oral mucosal HIV vaccine
嵌合 SHIV VLP 作为口腔粘膜 HIV 疫苗
- 批准号:
8334906 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Chimeric SHIV VLP as an oral mucosal HIV vaccine
嵌合 SHIV VLP 作为口腔粘膜 HIV 疫苗
- 批准号:
8536079 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Chimeric SHIV VLP as an oral mucosal HIV vaccine
嵌合 SHIV VLP 作为口腔粘膜 HIV 疫苗
- 批准号:
8802855 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Chimeric SHIV VLP as an oral mucosal HIV vaccine
嵌合 SHIV VLP 作为口腔粘膜 HIV 疫苗
- 批准号:
8698306 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Oral mucosal SHIV VLP vaccination against HIV
口腔粘膜 SHIV VLP 疫苗接种预防 HIV
- 批准号:
8112140 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Enhancement of dendritic cell vaccine efficiency against pancreatic cancer by MSK
MSK 增强树突状细胞疫苗对抗胰腺癌的功效
- 批准号:
7701010 - 财政年份:2009
- 资助金额:
-- - 项目类别:
相似海外基金
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10490338 - 财政年份:2021
- 资助金额:
-- - 项目类别:
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10353104 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Investigating pollution dynamics of swimming pool waters by means of chemical and biological markers
利用化学和生物标记物研究游泳池水体的污染动态
- 批准号:
21K04320 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10688286 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Novel biological markers for immunotherapy and comprehensive genetic analysis in thymic carcinoma
用于胸腺癌免疫治疗和综合遗传分析的新型生物标志物
- 批准号:
20K17755 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10578649 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10295141 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10041708 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
9776149 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Combining biological and non-biological markers to develop a model predictive of treatment response for individuals with depression
结合生物和非生物标志物来开发预测抑郁症患者治疗反应的模型
- 批准号:
2063934 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Studentship