Understanding redox-regulated mechanisms of environmental adaptation in gastrointestinal symbionts

了解胃肠道共生体环境适应的氧化还原调节机制

基本信息

  • 批准号:
    10620420
  • 负责人:
  • 金额:
    $ 4.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Bacteria that chronically colonize the host, such as the gut microbiota, must adapt to various forms of stress in the host environment. The molecular mechanisms bacteria use to sense and respond to these environmental signals are crucial for maintaining symbiotic associations with host cells. Oxidative stress is a hallmark of host-microbe interaction best known for its role in the host immune response; however, epithelial barriers also generate reactive oxygen species (ROS) in response to microbial contact. My lab uses chemical and genetic tools to define molecular mechanisms of bacterial adaptation to oxidative stress. We use the common gastric symbiont Helicobacter pylori to model bacterial responses to physiological ROS. H. pylori is a normal member of the gastric flora that can persist for decades in the host despite constant exposure to ROS-generating epithelial cells, similar to many commensal microbes. Using H. pylori co-cultured with gastric epithelial cells, we have developed a chemical proteomic strategy that can identify protein targets of ROS at the host-microbe interface. Unlike conventional methods for analyzing changes in gene expression, our approach detects post-translational oxidative modifications that can alter cell signaling even when protein levels do not change. This allows us to uncover redox-signaling events at the host-microbe interface that are largely unexplored and likely mediate bacterial adaptation to oxidative stress. In parallel, we are investigating thiol-containing small molecules that maintain redox balance within bacterial cells. While these low-molecular-weight (LMW) thiols are synthesized by nearly all life forms, certain classes of bacteria lack the canonical enzymes required for LMW-thiol biosynthesis. Consequently, how these bacteria detoxify ROS at the host-microbe interface remains an open question. We recently discovered a novel bacterial transporter of ergothioneine (EGT), an LMW thiol with potent antioxidant properties that is abundant in animal tissues. This transporter is broadly conserved in bacteria that commonly colonize the gastrointestinal tract; thus, EGT uptake could represent a new mechanism of microbial redox regulation at the host-microbe interface. In this proposal, we will determine how protein oxidation and LMW-thiol transport shape bacterial adaptation to the host environment. First, we will identify bacterial proteins that are oxidized following microbial contact with ROS-generating eukaryotic cells and elucidate the redox-signaling pathways that enable bacterial adaptation to physiological ROS. Second, we will characterize the proteins responsible for EGT transport in bacteria to increase understanding of this highly conserved process and its role in microbial redox biology. We will also use animal models to determine how EGT uptake influences microbial colonization and EGT metabolism in vivo. Together, these studies will define fundamental redox-signaling pathways (project 1) and transport mechanisms (project 2) that help maintain homeostasis at the host-microbe interface. In the long term, our work will provide a framework for investigating these processes in other microbes and could reveal new targets for the rational design of anti-infective therapies.
长期定植于宿主的细菌,例如肠道微生物群,必须适应宿主环境中各种形式的压力。细菌用来感知和响应这些环境信号的分子机制对于维持与宿主细胞的共生关系至关重要。氧化应激是宿主-微生物相互作用的一个标志,以其在宿主免疫反应中的作用而闻名。然而,上皮屏障也会因微生物接触而产生活性氧(ROS)。我的实验室使用化学和遗传工具来定义细菌适应氧化应激的分子机制。我们使用常见的胃共生体幽门螺杆菌来模拟细菌对生理活性氧的反应。幽门螺杆菌是胃菌群的正常成员,尽管不断暴露于产生 ROS 的上皮细胞,但与许多共生微生物类似,它仍可在宿主体内持续存在数十年。利用幽门螺杆菌与胃上皮细胞共培养,我们开发了一种化学蛋白质组学策略,可以识别宿主-微生物界面处 ROS 的蛋白质靶标。与分析基因表达变化的传统方法不同,我们的方法检测翻译后氧化修饰,即使蛋白质水平没有变化,这种修饰也可以改变细胞信号传导。这使我们能够发现宿主-微生物界面上的氧化还原信号传导事件,这些事件在很大程度上尚未被探索,并且可能介导细菌对氧化应激的适应。与此同时,我们正在研究维持细菌细胞内氧化还原平衡的含硫醇小分子。虽然这些低分子量 (LMW) 硫醇几乎可以由所有生命形式合成,但某些类别的细菌缺乏 LMW 硫醇生物合成所需的典型酶。因此,这些细菌如何在宿主-微生物界面解毒活性氧仍然是一个悬而未决的问题。我们最近发现了一种新型麦角硫因 (EGT) 细菌转运蛋白,麦角硫因是一种低分子量硫醇,具有有效的抗氧化特性,在动物组织中含量丰富。这种转运蛋白在通常定植于胃肠道的细菌中广泛保守。因此,EGT 的摄取可能代表了宿主-微生物界面上微生物氧化还原调节的一种新机制。在本提案中,我们将确定蛋白质氧化和 LMW-硫醇运输如何影响细菌对宿主环境的适应。首先,我们将鉴定微生物与产生 ROS 的真核细胞接触后被氧化的细菌蛋白,并阐明使细菌适应生理 ROS 的氧化还原信号通路。其次,我们将表征细菌中负责 EGT 转运的蛋白质,以加深对这一高度保守过程及其在微生物氧化还原生物学中的作用的了解。我们还将使用动物模型来确定 EGT 摄取如何影响微生物定植和体内 EGT 代谢。这些研究将共同​​定义有助于维持宿主-微生物界面稳态的基本氧化还原信号通路(项目 1)和运输机制(项目 2)。从长远来看,我们的工作将为研究其他微生物中的这些过程提供一个框架,并可能揭示合理设计抗感染疗法的新目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stavroula Hatzios其他文献

Stavroula Hatzios的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stavroula Hatzios', 18)}}的其他基金

Understanding redox-regulated mechanisms of environmental adaptation in gastrointestinal symbionts
了解胃肠道共生体环境适应的氧化还原调节机制
  • 批准号:
    10624350
  • 财政年份:
    2020
  • 资助金额:
    $ 4.82万
  • 项目类别:
Understanding redox-regulated mechanisms of environmental adaptation in gastrointestinal symbionts
了解胃肠道共生体环境适应的氧化还原调节机制
  • 批准号:
    10291209
  • 财政年份:
    2020
  • 资助金额:
    $ 4.82万
  • 项目类别:
Understanding redox-regulated mechanisms of environmental adaptation in gastrointestinal symbionts
了解胃肠道共生体环境适应的氧化还原调节机制
  • 批准号:
    10408156
  • 财政年份:
    2020
  • 资助金额:
    $ 4.82万
  • 项目类别:
Understanding redox-regulated mechanisms of environmental adaptation in gastrointestinal symbionts
了解胃肠道共生体环境适应的氧化还原调节机制
  • 批准号:
    10027399
  • 财政年份:
    2020
  • 资助金额:
    $ 4.82万
  • 项目类别:
Understanding redox-regulated mechanisms of environmental adaptation in gastrointestinal symbionts
了解胃肠道共生体环境适应的氧化还原调节机制
  • 批准号:
    10222730
  • 财政年份:
    2020
  • 资助金额:
    $ 4.82万
  • 项目类别:

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 4.82万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 4.82万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 4.82万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 4.82万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 4.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 4.82万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 4.82万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 4.82万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 4.82万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 4.82万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了