Mechanisms of Chromosome Scale Signal Propagation
染色体尺度信号传播的机制
基本信息
- 批准号:10620977
- 负责人:
- 金额:$ 4.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-03-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:ATP phosphohydrolaseAnimal ModelBindingBirdsCellsChromatinChromosomal BreaksChromosomal InstabilityChromosome SegregationChromosomesCommunicationCongenital AbnormalityCytologyDNADNA Double Strand BreakDangerousnessDataDefectDouble Strand Break RepairDown SyndromeDown-RegulationEdward&aposs syndromeEnsureEventFertilityFundingGenesGeneticGenetic EpistasisGenetic NondisjunctionGenetic RecombinationGenetic TranscriptionGenetic VariationGenomeGenomic SegmentGenomicsGerm CellsGoalsHumanHuman ChromosomesIncidenceInfertilityLeadLengthMammalsMeiosisMeiotic RecombinationMicroscopyModelingMolecularNuclearNuclear EnvelopeNuclear PoreOrganismPan GenusPatternProcessProductionProphaseProteinsRegulationResearchResistanceResolutionRestRiskRoleSaccharomyces cerevisiaeSignal TransductionStructureSynaptonemal ComplexTestingWorkYeastseggenzyme activityexperimental studygenome integritygenome-wide analysisimprovedinsightinterstitialnovelrepairedsegregationsperm celltelomeretumor progression
项目摘要
Project summary
The overall goal of this project is to determine how cells communicate chromosome break formation and
repair across large chromosomal distances. DNA double-strand breaks (DSBs) are dangerous insults to
genome integrity because of their potential to cause chromosome rearrangements and chromosome instability,
both of which are strongly associated with cancer progression as well as birth defects. Remarkably, meiotic
cells are able to efficiently orchestrate the formation and repair of hundreds of concurrent DSBs across their
genome during meiotic recombination, a process that is essential for proper gamete formation and fertility.
A key feature of meiotic DSB formation and repair is its coordination at the chromosomal level. In the
previous funding period we provided evidence that the synaptonemal complex, a conserved protein lattice that
forms between aligned homologous chromosomes in late meiotic prophase, communicates repair decisions
along meiotic chromosomes in S. cerevisiae. We showed that this communication resulted in reduced DSB
formation as well as simplified repair, and we identified several factors involved in this process. We now
discovered the existence of privileged genomic regions near the ends of all chromosomes that appear resistant
to regulation by the synaptonemal complex. These end-adjacent regions (EARs) cover large genomic
distances (~100kb, which is nearly half the length of the shortest chromosome) and continue to form and repair
DSBs well after DSB formation has stopped in the rest of the genome. Similar regions of elevated meiotic
recombination are also observed in birds, chimps, and humans.
The goal of this project is to define the chromosomal signal that generates these regions and to test if
EARs help inheritance of short chromosomes. Our preliminary analyses suggest several roles of the nuclear
envelope, both in the establishment of the EARs and in the suppression of DSBs in the rest of the genome.
The dynamics of chromosomal signaling and its interaction with the nuclear envelope will be analyzed by
genome-wide binding studies and super-resolution microscopy, taking advantage of a conditional nuclear
depletion approach that we recently introduced into meiotic cells that allows stage-specific knock-downs of
pleiotropic nuclear factors. In addition, signal integration will be analyzed using genetic epistasis analyses,
cytology, and physical analysis of DSB formation. As EARs cover a proportionally much larger fraction of short
chromosomes, the proposal will also use tetrad sequencing to test if these regions drive the widely observed
increase in recombination rates on short chromosomes. Fluorescent marker segregation will be used to
determine if EARs differentially improve the meiotic segregation fidelity of short chromosomes. Together, these
analyses will provide key insights into the mechanisms of chromosomal signal propagation, and open new
avenues for understanding the origins of birth defects such as Down syndrome (trisomy 21) and Edwards
syndrome (trisomy 18), which are caused by meiotic missegregation of short chromosomes.
项目摘要
该项目的总体目标是确定细胞如何传达染色体断裂的形成,
在大的染色体距离上进行修复。DNA双链断裂(DSB)是一种危险的损伤,
基因组完整性,因为它们可能导致染色体重排和染色体不稳定性,
这两者都与癌症进展以及出生缺陷密切相关。值得注意的是,减数分裂
细胞能够有效地协调数百个并发DSB的形成和修复,
在减数分裂重组过程中,基因组的分裂是一个对配子形成和生育力至关重要的过程。
减数分裂DSB形成和修复的一个关键特征是其在染色体水平上的协调。在
在上一个资助期,我们提供了证据表明联会复合体,一种保守的蛋白质晶格,
在减数分裂后期的同源染色体之间形成,传达修复决定
沿着减数分裂染色体。啤酒。我们发现,这种沟通导致DSB减少,
形成以及简化的修复,我们确定了参与这一过程的几个因素。我们现在
发现在所有出现抗性的染色体末端附近存在特权基因组区域
由联会复合体调节。这些末端邻近区域(EARs)覆盖了大的基因组DNA,
距离(~100kb,这是最短染色体长度的近一半),并继续形成和修复
在DSB形成后很久,DSB在基因组的其余部分停止。减数分裂的相似区域
在鸟类、黑猩猩和人类中也观察到了基因重组。
该项目的目标是确定产生这些区域的染色体信号,并测试是否
EAR有助于短染色体的遗传。我们的初步分析表明,
在基因组的其余部分中,EAR的建立和DSB的抑制都是由基因包封引起的。
染色体信号传导的动力学及其与核膜的相互作用将通过
全基因组结合研究和超分辨率显微镜,利用条件核
我们最近引入到减数分裂细胞中,允许阶段特异性敲低
多效性核因子此外,将使用遗传上位性分析来分析信号整合,
细胞学和DSB形成的物理分析。由于Ears覆盖的空头比例要大得多
该提案还将使用四分体测序来测试这些区域是否驱动广泛观察到的
短染色体上重组率增加。荧光标记分离将用于
确定EAR是否差异性地改善短染色体的减数分裂分离保真度。所有这些
分析将提供染色体信号传播机制的关键见解,并开辟新的
了解出生缺陷起源的途径,如唐氏综合症(21三体)和爱德华兹
综合征(18三体),其由短染色体的减数分裂错误分离引起。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Meiotic DNA breaks activate a streamlined phospho-signaling response that largely avoids protein-level changes.
- DOI:10.26508/lsa.202201454
- 发表时间:2022-10
- 期刊:
- 影响因子:4.4
- 作者:
- 通讯作者:
Varying strength of selection contributes to the intragenomic diversity of rRNA genes.
- DOI:10.1038/s41467-022-34989-w
- 发表时间:2022-11-25
- 期刊:
- 影响因子:16.6
- 作者:Sultanov, Daniel;Hochwagen, Andreas
- 通讯作者:Hochwagen, Andreas
SNP-ChIP: a versatile and tag-free method to quantify changes in protein binding across the genome.
SNP-ChIP:一种多功能且无标签的方法,用于量化整个基因组中蛋白质结合的变化。
- DOI:10.1186/s12864-018-5368-4
- 发表时间:2019
- 期刊:
- 影响因子:4.4
- 作者:Vale-Silva,LuisA;Markowitz,TovahE;Hochwagen,Andreas
- 通讯作者:Hochwagen,Andreas
Chromosome Synapsis Alleviates Mek1-Dependent Suppression of Meiotic DNA Repair.
染色体突触减轻了MEK1依赖性抑制减数分裂DNA修复。
- DOI:10.1371/journal.pbio.1002369
- 发表时间:2016-02
- 期刊:
- 影响因子:9.8
- 作者:Subramanian VV;MacQueen AJ;Vader G;Shinohara M;Sanchez A;Borde V;Shinohara A;Hochwagen A
- 通讯作者:Hochwagen A
Centromere clustering: where synapsis begins.
着丝粒聚集:突触开始的地方。
- DOI:10.1016/j.cub.2011.10.023
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Subramanian,VijayalakshmiV;Hochwagen,Andreas
- 通讯作者:Hochwagen,Andreas
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andreas Hochwagen其他文献
Andreas Hochwagen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andreas Hochwagen', 18)}}的其他基金
Chromosomal control of meiotic double-strand break formation
减数分裂双链断裂形成的染色体控制
- 批准号:
10078609 - 财政年份:2018
- 资助金额:
$ 4.09万 - 项目类别:
Mechanisms of Chromosome Scale Signal Propagation
染色体尺度信号传播的机制
- 批准号:
10172920 - 财政年份:2015
- 资助金额:
$ 4.09万 - 项目类别:
Mechanisms of Chromosome Scale Signal Propagation
染色体尺度信号传播的机制
- 批准号:
10217794 - 财政年份:2015
- 资助金额:
$ 4.09万 - 项目类别:
Mechanisms of Chromosome Scale Signal Propagation
染色体尺度信号传播的机制
- 批准号:
10403654 - 财政年份:2015
- 资助金额:
$ 4.09万 - 项目类别:
Mechanisms of Chromosome Scale Signal Propagation
染色体尺度信号传播的机制
- 批准号:
10001534 - 财政年份:2015
- 资助金额:
$ 4.09万 - 项目类别:
Control of meiotic double strand break formation
减数分裂双链断裂形成的控制
- 批准号:
8535164 - 财政年份:2010
- 资助金额:
$ 4.09万 - 项目类别:
Control of meiotic double strand break formation
减数分裂双链断裂形成的控制
- 批准号:
8041361 - 财政年份:2010
- 资助金额:
$ 4.09万 - 项目类别:
Control of meiotic double strand break formation
减数分裂双链断裂形成的控制
- 批准号:
8425479 - 财政年份:2010
- 资助金额:
$ 4.09万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 4.09万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 4.09万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 4.09万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 4.09万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 4.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 4.09万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 4.09万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 4.09万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 4.09万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 4.09万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




