Cardiac Sarcomere Protein Quality Control in Health and Disease
健康和疾病中的心脏肌节蛋白质量控制
基本信息
- 批准号:10621229
- 负责人:
- 金额:$ 53.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:ActinsAutophagosomeBAG3 geneBindingBiological AssayBiophysicsCardiacCardiac MyocytesCellsClientComplexDataDepressed moodDiseaseFunctional disorderFutureGenerationsGrantHalf-LifeHealthHeartHeart failureHeat-Shock Proteins 70Heat-Shock ResponseHumanImpairmentIn VitroKnockout MiceKnowledgeLasersLysosomesMechanical StressMediatingMental DepressionMethodsModelingModificationMolecular ChaperonesMusMuscle CellsMyocardial InfarctionMyosin ATPaseNatureNeonatalPathway interactionsPatientsPhenotypeProcessProteinsPublishingQuality ControlRattusRegulationRelaxationRoleSarcomeresSedimentation processSignal TransductionStimulusStressStructureSystemTherapeuticTransgenic MiceTropomyosinUbiquitinUbiquitinationVentricularVisualizationWorkcell motilitycostgene therapyimprovedin vivoinduced pluripotent stem celllive cell imagingmisfolded proteinnew therapeutic targetprotein degradationprotein protein interactionproteotoxicityrecruitresponsespatiotemporalubiquitin isopeptidaseubiquitin ligaseultra high resolution
项目摘要
Cardiomyocytes are essentially non-renewing, so proteotoxicity from dysregulated Protein
Quality Control (PQC) is intimately associated with heart failure. The proteins that comprise the
cardiac sarcomere are responsible for force generation in the myocyte, and this constant mechanical
stress uniquely predisposes them to misfolding. Despite PQC’s central role in heart failure, and the
particular vulnerability of the sarcomere to misfolding, the PQC mechanisms that maintain the
cardiac sarcomere are almost entirely unknown. This is a critical knowledge gap that we will
address in this proposal. Our past work described a z-disc localized complex, anchored by the co-
chaperone Bcl2-associated athanogene-3 (BAG3), that was essential for sarcomere PQC. Z-disc
BAG3 levels were depressed in human heart failure (HF) and correlated with decreased sarcomeric
force-generating capacity (Fmax). Similarly, cardio-myocyte specific inducible BAG3 KO mice had
increased ubiquitination of sarcomeric proteins that remained integrated in the lattice, reducing force
generation. Importantly, BAG3 gene therapy in a mouse HF model reversed this phenotype,
indicating the potential of targeting sarcomere PQC to improve contractile function. In this renewal we
will address the central hypothesis that sarcomere PQC occurs via sarcomere-localized pathways
and depression of these systems in HF due to BAG3 instability results in accumulation of
ubiquitinated proteins that induce dysfunction. In Aim 1 we will Explore the spatiotemporal
organization of the key steps in sarcomere PQC. We will use super-resolution live cell imaging in
neonatal rat ventricular myocytes (NRVMs) and human iPSC-CMs to visualize the spatiotemporal
interplay between BAG3, autophagosomes, lysosomes, the z-disc, and BAG3-clients at baseline and
in response to various stress and stimuli, such as heat shock, localized laser damage, hypertrophic
signaling, and depressed BAG3 levels. In Aim 2 we will identify the functional consequences of
sarcomeric protein ubiquitination. We will use in vivo and in vitro approaches to modulate sarcomere
protein ubiquitination and assess the impact on sarcomere function with biophysical assays (force-
Ca2+ relationship, tension cost, in vitro motility assay, super-relaxed state, co-sedimentation). In Aim
3 we will discover the regulation of BAG3 in the cardiomyocyte and how it is altered in heart failure.
We will use several transgenic mouse lines and a myocardial infarction induced heart failure model,
to discover the interplay between HSP70, BAG3, heart failure, and sarcomere PQC. We expect to
identify new methods to stabilize BAG3 in the failing heart as a possible therapeutic strategy. These 3
aims establish a foundational understanding of sarcomere PQC, functional consequences of its
misregulation, and how it can be modulated in vivo.
心肌细胞本质上是不可更新的,因此失调的蛋白质会产生蛋白质毒性
质量控制(PQC)与心力衰竭密切相关。组成的蛋白质
心脏肌节负责在肌细胞中产生力,并且这种恒定的机械力
压力特别容易导致它们错误折叠。尽管 PQC 在心力衰竭中发挥着核心作用,并且
肌节特别容易发生错误折叠,维持
心脏肌节几乎完全未知。这是一个关键的知识差距,我们将
本提案中的地址。我们过去的工作描述了一个 z 盘局部复合体,由共同锚定
Bcl2 相关伴侣 athanogene-3 (BAG3),对于肌节 PQC 至关重要。 Z盘
BAG3 水平在人类心力衰竭 (HF) 中降低,并与肌节减少相关
产生力的能力(Fmax)。同样,心肌细胞特异性诱导的 BAG3 KO 小鼠也具有
保持整合在晶格中的肌节蛋白的泛素化增加,减少了力
一代。重要的是,小鼠心衰模型中的 BAG3 基因治疗逆转了这种表型,
表明靶向肌节 PQC 改善收缩功能的潜力。在这次更新中我们
将解决肌节 PQC 通过肌节局部途径发生的中心假设
由于 BAG3 不稳定,HF 中这些系统的抑制会导致
引起功能障碍的泛素化蛋白质。在目标 1 中,我们将探索时空
肌节 PQC 关键步骤的组织。我们将使用超分辨率活细胞成像
新生大鼠心室肌细胞 (NRVM) 和人类 iPSC-CM 以可视化时空
BAG3、自噬体、溶酶体、z 盘和 BAG3 客户端之间在基线和
响应各种压力和刺激,如热休克、局部激光损伤、肥大
信号传导,并降低 BAG3 水平。在目标 2 中,我们将确定以下功能的后果
肌节蛋白泛素化。我们将使用体内和体外方法来调节肌节
蛋白质泛素化并通过生物物理测定(力-
Ca2+ 关系、张力成本、体外运动测定、超松弛状态、共沉降)。瞄准
3 我们将发现 BAG3 在心肌细胞中的调节以及它在心力衰竭中如何改变。
我们将使用几种转基因小鼠品系和心肌梗塞诱发的心力衰竭模型,
发现 HSP70、BAG3、心力衰竭和肌节 PQC 之间的相互作用。我们期望
确定稳定衰竭心脏中 BAG3 的新方法作为可能的治疗策略。这3个
目的是建立对肌节 PQC 及其功能后果的基本了解
失调,以及如何在体内调节它。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JONATHAN A KIRK其他文献
JONATHAN A KIRK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JONATHAN A KIRK', 18)}}的其他基金
GSK-3β Localizes to the Myofilament and Modifies its Function in Ischemic Cardiomyopathy
GSK-3β 定位于肌丝并改变其在缺血性心肌病中的功能
- 批准号:
9287330 - 财政年份:2017
- 资助金额:
$ 53.92万 - 项目类别:
Cardiac Sarcomere Protein Quality Control in Health and Disease
健康和疾病中的心脏肌节蛋白质量控制
- 批准号:
10445976 - 财政年份:2017
- 资助金额:
$ 53.92万 - 项目类别:
GSK-3β Localizes to the Myofilament and Modifies its Function in Ischemic Cardiomyopathy
GSK-3β 定位于肌丝并改变其在缺血性心肌病中的功能
- 批准号:
9903442 - 财政年份:2017
- 资助金额:
$ 53.92万 - 项目类别:
相似海外基金
ATG2 transfers lipids from ER exit site membranes to directly expand the growing autophagosome
ATG2 从 ER 出口位点膜转移脂质以直接扩展生长中的自噬体
- 批准号:
10707025 - 财政年份:2022
- 资助金额:
$ 53.92万 - 项目类别:
ATG2 transfers lipids from ER exit site membranes to directly expand the growing autophagosome
ATG2 从 ER 出口位点膜转移脂质以直接扩展生长中的自噬体
- 批准号:
10536404 - 财政年份:2022
- 资助金额:
$ 53.92万 - 项目类别:
ATG9 scrambles lipids in concert with ATG2 lipid delivery to directly grow the autophagosome
ATG9 与 ATG2 脂质输送协同扰乱脂质,以直接生长自噬体
- 批准号:
10247303 - 财政年份:2021
- 资助金额:
$ 53.92万 - 项目类别:
ATG9 scrambles lipids in concert with ATG2 lipid delivery to directly grow the autophagosome
ATG9 与 ATG2 脂质输送协同扰乱脂质,以直接生长自噬体
- 批准号:
10391326 - 财政年份:2021
- 资助金额:
$ 53.92万 - 项目类别:
Mechanism of initiating autophagosome biogenesis on ER membrane (P19)
内质网膜上自噬体生物发生的启动机制(P19)
- 批准号:
436808296 - 财政年份:2020
- 资助金额:
$ 53.92万 - 项目类别:
Collaborative Research Centres
Lipid flux during autophagosome membrane biogenesis
自噬体膜生物发生过程中的脂质通量
- 批准号:
10331030 - 财政年份:2020
- 资助金额:
$ 53.92万 - 项目类别:
Lipid flux during autophagosome membrane biogenesis
自噬体膜生物发生过程中的脂质通量
- 批准号:
10561660 - 财政年份:2020
- 资助金额:
$ 53.92万 - 项目类别:
The origin of autophagosome derived from the endoplasmic reticulum with a focus on pancreatic stellate cell activation genes
自噬体起源于内质网,重点关注胰腺星状细胞激活基因
- 批准号:
20K09036 - 财政年份:2020
- 资助金额:
$ 53.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
High-speed AFM observation of autophagosome formation sites formed by liquid-liquid phase separation
高速AFM观察液-液相分离形成的自噬体形成位点
- 批准号:
19K16344 - 财政年份:2019
- 资助金额:
$ 53.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Analysis of autophagosome formation in myelodysplastic syndrome
骨髓增生异常综合征自噬体形成分析
- 批准号:
19K16582 - 财政年份:2019
- 资助金额:
$ 53.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists