Deciphering the mechanism of SHIP1 regulation in human neutrophils

破译 SHIP1 在人类中性粒细胞中的调节机制

基本信息

  • 批准号:
    10623312
  • 负责人:
  • 金额:
    $ 30.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Research Summary Statement Immune cells interpret chemical cues in their environment and make decisions that control their fate. For example, human neutrophils often respond to signals by polarizing and migrating toward the chemical source. Critical for these cellular functions is the dynamic interplay between cell surface receptors, small GTPases, and the enzymes that synthesize phosphatidylinositol phosphate (PIP) lipids. This study aims to decipher the mechanisms the control communication between these different classes of signaling molecules at the plasma membrane. Using human neutrophils, we find that Cdc42 GTPase and a lipid phosphatase denoted SHIP1 trigger a molecular signal that propagates across the plasma membrane in the form of a traveling wave. This behavior, coined excitability, involves repetitive cycles of protein recruitment ON and OFF the membrane. The goal of this study is to determine how SHIP1 regulates the excitable signaling network by integrating signals derived from lipids and membrane tethered proteins. Using a variety of in vitro biochemistry techniques, including supported membrane technology and single molecule imaging, we will determine how lipid composition controls SHIP1 membrane association and phosphatase activity (Aim 1). Using factors that regulate the excitable signaling network in cells, we will reconstitute mechanisms that control SHIP1 membrane recruitment, release of autoinhibition, and activation (Aim 2). In parallel, we will use CRISPR based genome editing, optogenetics, and quantitative live cell imaging of fluorescent biosensors to elucidate how communication between PIP lipids and small GTPase is regulated by SHIP1. Using these tools we will determine the role SHIP1 serves as signaling network scaffold versus a lipid phosphatase (Aim 3). Overall, this study will unify membrane biophysics and cell biology to explain how PIP lipids, small GTPases, and SHIP1 synergistically control the excitable signaling network and cell migration in neutrophils. By unraveling how white blood cells sense, interpret, and respond to pathogenic signals we will fill a gap in knowledge concerning how these signaling molecules coordinate cellular movement with the underlying excitable network. This discovery could open doors for researchers to develop new therapeutics that can be used to modulate immune cell functions in ways that combat infection, inflammation, and cancer.
研究总结声明 免疫细胞解释环境中的化学信号并做出控制其命运的决定。为了 例如,人类中性粒细胞通常通过极化并向化学源迁移来响应信号。 这些细胞功能的关键是细胞表面受体、小 GTP 酶和 合成磷脂酰肌醇磷酸 (PIP) 脂质的酶。本研究旨在破译 等离子体中这些不同类别的信号分子之间的控制通信机制 膜。使用人类中性粒细胞,我们发现 Cdc42 GTPase 和表示为 SHIP1 的脂质磷酸酶 触发以行波形式穿过质膜传播的分子信号。这 行为,即兴奋性,涉及膜上和膜外蛋白质募集的重复循环。这 本研究的目标是确定 SHIP1 如何通过整合信号来调节可兴奋信号网络 源自脂质和膜束缚蛋白。使用各种体外生物化学技术,包括 支持膜技术和单分子成像,我们将确定脂质成分如何控制 SHIP1 膜关联和磷酸酶活性(目标 1)。利用调节兴奋的因素 细胞内的信号网络,我们将重建控制SHIP1膜招募、释放的机制 自抑制和激活(目标 2)。与此同时,我们将使用基于 CRISPR 的基因组编辑、光遗传学、 荧光生物传感器的定量活细胞成像,以阐明 PIP 脂质之间的通讯方式 小GTP酶受SHIP1调节。使用这些工具,我们将确定 SHIP1 作为信号传递的角色 网络支架与脂质磷酸酶(目标 3)。总的来说,这项研究将统一膜生物物理学和细胞 生物学解释 PIP 脂质、小 GTPases 和 SHIP1 如何协同控制兴奋信号传导 中性粒细胞的网络和细胞迁移。通过揭示白细胞如何感知、解释和响应 致病信号,我们将填补关于这些信号分子如何协调细胞的知识空白 与底层可兴奋网络的运动。这一发现可能为研究人员开发新产品打开大门 可用于调节免疫细胞功能以对抗感染的新疗法, 炎症、癌症。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanisms controlling membrane recruitment and activation of the autoinhibited SHIP1 inositol 5-phosphatase.
  • DOI:
    10.1016/j.jbc.2023.105022
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Waddell, Grace L.;Drew, Emma E.;Rupp, Henry P.;Hansen, Scott D.
  • 通讯作者:
    Hansen, Scott D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Scott David Hansen其他文献

Scott David Hansen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Scott David Hansen', 18)}}的其他基金

Deciphering the mechanism of SHIP1 regulation in human neutrophils
破译 SHIP1 在人类中性粒细胞中的调节机制
  • 批准号:
    10434928
  • 财政年份:
    2021
  • 资助金额:
    $ 30.14万
  • 项目类别:
Deciphering the mechanism of SHIP1 regulation in human neutrophils
破译 SHIP1 在人类中性粒细胞中的调节机制
  • 批准号:
    10280943
  • 财政年份:
    2021
  • 资助金额:
    $ 30.14万
  • 项目类别:
Deciphering the mechanism of SHIP1 regulation in human neutrophils
破译 SHIP1 在人类中性粒细胞中的调节机制
  • 批准号:
    10582013
  • 财政年份:
    2021
  • 资助金额:
    $ 30.14万
  • 项目类别:
Self-organized membrane polarity of a phosphatidylinositol-based signaling system
基于磷脂酰肌醇的信号系统的自组织膜极性
  • 批准号:
    8718516
  • 财政年份:
    2014
  • 资助金额:
    $ 30.14万
  • 项目类别:

相似海外基金

CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 30.14万
  • 项目类别:
    Continuing Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
  • 批准号:
    2904511
  • 财政年份:
    2024
  • 资助金额:
    $ 30.14万
  • 项目类别:
    Studentship
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
  • 批准号:
    2339197
  • 财政年份:
    2024
  • 资助金额:
    $ 30.14万
  • 项目类别:
    Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
  • 批准号:
    2409279
  • 财政年份:
    2024
  • 资助金额:
    $ 30.14万
  • 项目类别:
    Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
  • 批准号:
    2419386
  • 财政年份:
    2024
  • 资助金额:
    $ 30.14万
  • 项目类别:
    Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
  • 批准号:
    2348571
  • 财政年份:
    2024
  • 资助金额:
    $ 30.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329759
  • 财政年份:
    2024
  • 资助金额:
    $ 30.14万
  • 项目类别:
    Standard Grant
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
  • 批准号:
    BB/X014657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.14万
  • 项目类别:
    Research Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
  • 批准号:
    EP/Y028120/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.14万
  • 项目类别:
    Fellowship
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
  • 批准号:
    2344424
  • 财政年份:
    2024
  • 资助金额:
    $ 30.14万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了