Racial Bias in Risk Adjustment Algorithms and Implications for Racial Health Disparities: Evidence from Dual-Eligible Medicare/Medicaid Long-term Care Patients in New York

风险调整算法中的种族偏见以及对种族健康差异的影响:来自纽约双重资格医疗保险/医疗补助长期护理患者的证据

基本信息

  • 批准号:
    10624402
  • 负责人:
  • 金额:
    $ 38.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT A growing body of evidence demonstrates the presence of racial bias in data algorithms. In healthcare, racial bias could arise due to systematic biases in classification and coding, data availability, or data accuracies that differ across racial groups. For instance, algorithms that use data on healthcare costs—rather than illness—to predict need tend to allocate too few resources to Black patients who are underserved by our current system and generate lower spending than white patients with the same health conditions. This issue is increasingly relevant because most U.S. public health insurance programs operate capitated managed care systems, in which beneficiaries enroll in private insurance plans, and the government pays insurers a fixed monthly capitation payment per enrollee. These per-capita payments are typically calculated using risk-adjustment algorithms, in which patient costs are predicted with information on age, gender, and selected health conditions from data on past enrollees. However, race is often excluded from these algorithms, raising the possibility that risk-adjusted managed care could widen racial disparities in care and outcomes among patients. Yet there is little empirical evidence on the impacts of risk-adjusted managed care systems on racial differences in care and health outcomes, especially in high-cost settings, such as long-term care. This project will advance knowledge on these issues by studying the causal effects of risk-adjusted managed long-term care (MLTC) on racial disparities in care and outcomes among dual-eligible Medicare/Medicaid long-term care beneficiaries in New York, using 8 years of administrative data on Medicaid and Medicare enrollment, claims, and assessment records. The project will identify the effects of risk-adjusted MLTC on a range of care utilization and health outcomes, including inpatient, post-acute, nursing home, and at-home care, prescription drug use, and mortality, separately by patient race/ethnicity. Leveraging the county-by-county rollout of managed care mandates, the analysis will use difference-in-differences models to compare within-county changes in outcomes of patients in New York from before to after managed care was implemented. We will estimate separate models by race/ethnicity of the patient, testing for statistical differences in MLTC effects. The project will also identify subgroups who are most severely affected by racial bias in risk-adjustment algorithms, through sub-group analyses that compare effects by gender, age, presence of chronic conditions, and zip code level median income. The project will additionally examine the role of managed care plan features in driving racial disparities in health care utilization and health outcomes. Results will help policymakers, healthcare organizations, providers, and patients to understand the implications of bias in risk-adjustment algorithms on patient health, identify subgroups of patients who are most severely impacted, and learn about effective plan features that could curb or eliminate racial health disparities in managed care settings.
项目总结/摘要 越来越多的证据表明数据算法中存在种族偏见。在医疗保健方面, 由于分类和编码、数据可用性或数据准确性方面的系统性偏差, 在不同种族群体之间存在差异。例如,使用医疗成本数据而不是疾病数据的算法, 预测需要往往分配太少的资源给黑人病人谁是我们目前的系统服务不足 并且产生的花费比具有相同健康状况的白色患者低。这个问题越来越多地 相关的,因为大多数美国公共健康保险计划经营资本管理医疗系统, 受益人参加私人保险计划,政府每月向保险公司支付固定的保险费, 按人头付费。这些人均支付通常使用风险调整计算 算法,其中患者成本是根据年龄,性别和选定的健康状况信息进行预测的 从过去的注册者的数据中。然而,种族往往被排除在这些算法之外,这增加了以下可能性: 风险调整管理式护理可能会扩大患者在护理和结果方面的种族差异。然而有 关于风险调整管理式护理系统对护理中种族差异的影响的经验证据很少 和健康结果,特别是在高成本环境中,如长期护理。该项目将推进 通过研究风险调整的管理式长期护理(MLTC)的因果关系, 具有双重资格的医疗保险/医疗补助长期护理受益人在护理和结果方面的种族差异 纽约,使用关于医疗补助和医疗保险登记、索赔和评估的8年行政数据 记录该项目将确定风险调整MLTC对一系列护理利用和健康的影响 结局,包括住院、急性期后、疗养院和家庭护理、处方药使用,以及 死亡率,分别按患者种族/民族列出。利用逐县推出的管理式护理 任务,分析将使用差异中的差异模型来比较县内的变化, 纽约的病人从实施管理式护理之前到之后的结果。我们估计 按患者的种族/民族分开模型,检验MLTC效应的统计学差异。项目 还将确定风险调整算法中受种族偏见影响最严重的亚组, 亚组分析,按性别、年龄、慢性病的存在和邮政编码水平比较效果 收入中位数该项目还将研究管理式护理计划在推动种族歧视方面的作用。 卫生保健利用和健康结果的差异。结果将有助于政策制定者,医疗保健 组织,提供者和患者了解风险调整算法中的偏差对 患者健康,确定受影响最严重的患者亚组,并了解有效的计划 这些功能可以遏制或消除管理式医疗环境中的种族健康差异。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ajin Lee其他文献

Ajin Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ajin Lee', 18)}}的其他基金

Racial Bias in Risk Adjustment Algorithms and Implications for Racial Health Disparities: Evidence from Dual-Eligible Medicare/Medicaid Long-term Care Patients in New York
风险调整算法中的种族偏见以及对种族健康差异的影响:来自纽约双重资格医疗保险/医疗补助长期护理患者的证据
  • 批准号:
    10474727
  • 财政年份:
    2022
  • 资助金额:
    $ 38.77万
  • 项目类别:

相似海外基金

Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
  • 批准号:
    495182
  • 财政年份:
    2023
  • 资助金额:
    $ 38.77万
  • 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
  • 批准号:
    2601817
  • 财政年份:
    2021
  • 资助金额:
    $ 38.77万
  • 项目类别:
    Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
  • 批准号:
    2029039
  • 财政年份:
    2020
  • 资助金额:
    $ 38.77万
  • 项目类别:
    Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
  • 批准号:
    9888417
  • 财政年份:
    2019
  • 资助金额:
    $ 38.77万
  • 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
  • 批准号:
    17K11318
  • 财政年份:
    2017
  • 资助金额:
    $ 38.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9320090
  • 财政年份:
    2017
  • 资助金额:
    $ 38.77万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    10166936
  • 财政年份:
    2017
  • 资助金额:
    $ 38.77万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9761593
  • 财政年份:
    2017
  • 资助金额:
    $ 38.77万
  • 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
  • 批准号:
    BB/M50306X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 38.77万
  • 项目类别:
    Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
  • 批准号:
    288272
  • 财政年份:
    2013
  • 资助金额:
    $ 38.77万
  • 项目类别:
    Miscellaneous Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了