Improving Outcomes in Depression in Primary Care in a Low Resource Setting
改善资源匮乏的初级保健中抑郁症的治疗效果
基本信息
- 批准号:10624403
- 负责人:
- 金额:$ 115.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-18 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AcademiaAdherenceAdvocateAntidepressive AgentsBehavioralCaringCharacteristicsClinicalCollaborationsCost AnalysisCost Effectiveness AnalysisDetectionDisease remissionEffectivenessEuropean ancestryExclusion CriteriaFluoxetineGenotypeGoalsHealth systemIndiaIndividualInterventionKnowledgeMachine LearningMasksMeasuresMediationMediatorMental DepressionMental HealthMental Health ServicesNational Institute of Mental HealthNepalNeurocognitiveOutcomeParticipantPatient-Focused OutcomesPatientsPharmaceutical PreparationsPoliciesPrecision therapeuticsPrediction of Response to TherapyPrimary CareProbabilityPsychotherapyQuality-Adjusted Life YearsRandom AllocationRandomizedRecommendationRecoveryResearchResearch InfrastructureResource-limited settingSample SizeSamplingSelective Serotonin Reuptake InhibitorSpecialistSpecificityTestingTreatment outcomeWorkWorld Health Organizationburden of illnesscost effectivecost effectivenesseffectiveness evaluationeffectiveness outcomeethnic diversityfunctional outcomesgenetic predictorsgenome wide association studyhealth care deliveryimproved outcomeindividual patientindividual variationinsightoptimal treatmentspersonalized medicinepolygenic risk scoreprecision medicineprimary care patientprimary care settingprogramspsychogeneticspsychologicrelative costrelative effectivenessresponseroutine caresocioeconomicstreatment optimizationtreatment trial
项目摘要
Project Summary Abstract
Depression is the leading mental health related contributor to the Global Burden of Disease. We have shown in
previous studies that generic antidepressant medications (ADMs) and brief psychological interventions such as
our culturally adapted version of behavioral activation, the Healthy Activity Program (HAP), are effective in
achieving remission in primary care patients. However, not everyone responds to either intervention and
similar aggregate outcomes can mask considerable individual variability in response. The goal of our proposed
research is to see if we can enhance treatment outcomes for patients with moderate to severe depression by
personalizing allocation to one of the two treatments; additionally, we aim to identify those patients who are
unlikely to respond to either treatment and should be referred to specialist care. To achieve this, we will use
machine learning to develop a precision treatment rule (PTR) based on a wide range of baseline moderators
which are feasible to assess in routine care settings. Our primary hypothesis is that those patients randomized
by chance to their optimal intervention as indicated by the PTR will be more likely to remit and recover than
those who are not. Moreover, we hypothesize that using our PTR to select the optimal treatment for each
individual patient will prove to be more cost-effective than leaving things to chance. We also plan to explore
secondary questions, such as whether we can enhance our mediation tests by including the PTR in
interactions with our purported mediators (moderated mediation). Further, we plan to explore whether we can
enhance the prescriptive utility of our PTR via genotyping our sample and calculating polygenic risk scores
based on very large sample Genome-Wide Association studies. We will test these hypotheses in a controlled
trial in primary care settings in India where we have a record of conducting depression treatment trials for two
decades. We plan to randomize 1500 individuals to either HAP or ADM and generate our PTR on the first 1000
patients randomized and then test it on the remaining 500 patients. This will be the first test of whether
precision medicine can be used to enhance depression treatment outcomes through prediction of differential
response to the two treatments recommended by the WHO for depression in primary care. Concurrently, we
also should be able to identify baseline predictors of nonresponse to either of these two treatments, so as to
identify patients who should be referred to specialist care at the outset. Our findings have the potential to make
significant contributions to the prospect of optimizing the treatment of depression in primary care not just in
India but also in primary care settings worldwide, and thus support the practice-related goals of NIMH RFA-
MH-18-701.
项目摘要摘要
抑郁症是全球疾病负担的领先与心理健康有关的贡献者。我们显示了
先前的研究表明,通用抗抑郁药(ADM)和简短的心理干预措施,例如
我们在文化上适应的行为激活版本,健康活动计划(HAP),有效
在初级保健患者中缓解。但是,并不是每个人都对任何干预做出回应,并且
类似的总成果可以掩盖响应中的大量个人变异性。我们提议的目标
研究是为了查看我们是否可以通过通过
个性化分配给两种治疗方法之一;此外,我们的目的是确定那些
不太可能对任何一种治疗做出反应,应转交给专业护理。为了实现这一目标,我们将使用
基于广泛的基线主持人制定精确治疗规则(PTR)的机器学习
可以在常规护理环境中评估可行的。我们的主要假设是那些随机的患者
偶然地进行最佳干预措施,如PTR所示,汇款和恢复的可能性比
那些不是的人。此外,我们假设使用我们的PTR选择每个
个人患者将被证明比让事情变得更具成本效益。我们还计划探索
次要问题,例如我们是否可以通过将PTR包括在内来增强调解测试
与我们所谓的介体的相互作用(调解)。此外,我们计划探索我们是否可以
通过基因分型并计算多基因风险评分来增强我们PTR的规范效用
基于非常大的样本全基因组关联研究。我们将在受控的
在印度的初级保健环境中的试验,我们有两项进行抑郁症治疗试验的记录
几十年。我们计划将1500个个人随机hap或ADM随机,并在第一个1000上生成我们的PTR
随机对患者进行随机对其进行测试。这将是第一个测试是否
精密医学可用于通过预测差异来增强抑郁症治疗结果
WHO建议在初级保健中建议的两种治疗方法。同时,我们
还应该能够识别这两种治疗方法中的任何一种的基线预测指标,以便
确定一开始应转诊至专业护理的患者。我们的发现有可能使
不仅
印度也在全球初级保健环境中,因此支持NIMH RFA-的实践目标
MH-18-701。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEVEN DENNIS HOLLON其他文献
STEVEN DENNIS HOLLON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEVEN DENNIS HOLLON', 18)}}的其他基金
An Immersive Virtual Reality Peer Support Application for Individuals with Opioid Use Disorder: Development and Initial Evaluation
针对阿片类药物使用障碍患者的沉浸式虚拟现实同伴支持应用程序:开发和初步评估
- 批准号:
10011746 - 财政年份:2020
- 资助金额:
$ 115.28万 - 项目类别:
Prevention of Recurrence in Depression with Drugs and CT
通过药物和 CT 预防抑郁症复发
- 批准号:
6987047 - 财政年份:2005
- 资助金额:
$ 115.28万 - 项目类别:
Prevention of Recurrence in Depression with Drugs and CT
通过药物和 CT 预防抑郁症复发
- 批准号:
7656826 - 财政年份:2005
- 资助金额:
$ 115.28万 - 项目类别:
Prevention of Recurrence in Depression with Drugs and CT
通过药物和 CT 预防抑郁症复发
- 批准号:
7256914 - 财政年份:2005
- 资助金额:
$ 115.28万 - 项目类别:
Prevention of Recurrence in Depression with Drugs and CT
通过药物和 CT 预防抑郁症复发
- 批准号:
7459104 - 财政年份:2005
- 资助金额:
$ 115.28万 - 项目类别:
Prevention of Recurrence in Depression with Drugs and CT
通过药物和 CT 预防抑郁症复发
- 批准号:
7126095 - 财政年份:2005
- 资助金额:
$ 115.28万 - 项目类别:
Prevention of Recurrence in Depression with Drugs and CT
通过药物和 CT 预防抑郁症复发
- 批准号:
6327011 - 财政年份:2002
- 资助金额:
$ 115.28万 - 项目类别:
Prevention of Recurrence in Depression with Drugs and CT
通过药物和 CT 预防抑郁症复发
- 批准号:
6869612 - 财政年份:2002
- 资助金额:
$ 115.28万 - 项目类别:
Prevention of Recurrence in Depression with Drugs and Cognitive Therapy
通过药物和认知疗法预防抑郁症复发
- 批准号:
7392335 - 财政年份:2002
- 资助金额:
$ 115.28万 - 项目类别:
Prevention of Recurrence in Depression with Drugs and Cognitive Therapy
通过药物和认知疗法预防抑郁症复发
- 批准号:
7777247 - 财政年份:2002
- 资助金额:
$ 115.28万 - 项目类别:
相似国自然基金
坚持还是转型?反馈驱动的创业者机会信念认知更新及响应决策机理
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
坚持还是转型?反馈驱动的创业者机会信念认知更新及响应决策机理
- 批准号:72272131
- 批准年份:2022
- 资助金额:45.00 万元
- 项目类别:面上项目
不确定性下创业团队能量和抗逆力对创业坚持的权变影响研究
- 批准号:72162025
- 批准年份:2021
- 资助金额:29 万元
- 项目类别:地区科学基金项目
创造性思维中灵活性和坚持性动态交互的神经基础
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
创造性思维中灵活性和坚持性动态交互的神经基础
- 批准号:32100850
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Biobehavioral Intervention to Reduce PTSD Symptoms After an ICD Shock
生物行为干预可减少 ICD 电击后的 PTSD 症状
- 批准号:
10722157 - 财政年份:2023
- 资助金额:
$ 115.28万 - 项目类别:
Using artificially intelligent text messaging technology to improve American Heart Association's Life's Simple 7 Health Behaviors: LS7 Bot + Backup
利用人工智能短信技术改善美国心脏协会的生活简单7个健康行为:LS7 Bot Backup
- 批准号:
10649884 - 财政年份:2023
- 资助金额:
$ 115.28万 - 项目类别:
The role of state agencies in mental health services for individuals with co-occurring intellectual and developmental disabilities and mental illness
国家机构在为同时患有智力和发育障碍以及精神疾病的个人提供心理健康服务方面的作用
- 批准号:
10534976 - 财政年份:2023
- 资助金额:
$ 115.28万 - 项目类别:
Implementation and Outcomes of Child Protection System Reporting Policies Regarding Infants Born with Prenatal Substance Exposure
关于出生前接触药物的婴儿的儿童保护系统报告政策的实施和成果
- 批准号:
10600289 - 财政年份:2023
- 资助金额:
$ 115.28万 - 项目类别:
Development and pilot testing of a mobile health application to improve HIV prevention and substance use treatment service access among women involved in the carceral system
开发并试点测试移动医疗应用程序,以改善监狱系统中妇女的艾滋病毒预防和药物滥用治疗服务的获取
- 批准号:
10619999 - 财政年份:2023
- 资助金额:
$ 115.28万 - 项目类别: