Utilizing Human Brain Organoids to Model the Differential Effects of SCN8A Mutation on Cortex and Hippocampus
利用人脑类器官模拟 SCN8A 突变对皮层和海马的不同影响
基本信息
- 批准号:10624428
- 负责人:
- 金额:$ 23.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAnticonvulsantsArchitectureBiological ModelsBiomedical ResearchBrainBrain regionCalciumCellsChildChildhoodComplexDataDefectDevelopmentDiseaseDrug usageElectrodesElementsEmbryoEpilepsyEtiologyFrequenciesFunctional disorderGenerationsGoalsHippocampusHumanImageImmunohistochemistryImpaired cognitionImpairmentIn VitroIndividualInterneuronsMedicalMemory impairmentMethodologyModelingMorphologyMutationNeural Network SimulationNeurodevelopmental DisorderNeuronsOrganoidsPathogenicityPatientsPatternPhenotypePhysiologicalPlayPluripotent Stem CellsPopulationProsencephalonPublic HealthPublishingRefractoryResearchRett SyndromeRoleSCN8A geneSchool-Age PopulationScientistSeizuresSodium ChannelSortingStructureSubcellular AnatomySyndromeSystemTechniquesTechnologyTestingTherapeuticTherapeutic AgentsTissuesTrainingValidationWorkcalcium indicatorcareercell typechildhood epilepsycomparison controldrug testingeffective therapyepileptic encephalopathiesepileptiformexcitatory neuronextracellulargain of functiongain of function mutationgenetic manipulationgenetic varianthuman diseasehuman embryonic stem cellin vivoinduced pluripotent stem cellinhibitory neuroninsightmemory consolidationmigrationmutantneonatal seizurenervous system disorderneuralneural circuitneural modelneural networkneurodevelopmentneurophysiologynew technologynew therapeutic targetnovelnovel therapeuticsprogramsstem cell biologysynaptogenesistherapeutic targetthree dimensional structuretwo-photonvoltage
项目摘要
Project Summary/Abstract
Epilepsy is a severe and debilitating disease and a significant public health concern. Epilepsy is also a
disease without a medical cure, and a disease where about 1 in 3 patients fails to respond to anti-seizure
medications. In the most severe epilepsy syndromes of childhood, medical control of seizures can be even
more challenging. Novel experimental platforms have the potential to play a critical role in advancing our
understanding and treatment of epilepsy. Brain organoids derived from human embryonic or induced
pluripotent stem cells are one such novel technology that has enormous potential. This is particularly true for
severe childhood epilepsies, as organoids are ideally suited to model early neural development. Organoids are
3D structures that recapitulate complex elements of human brain such as its laminar organization and cell
types seen in all six layers of human cortex. Since they can be human induced-pluripotent stem cell (hiPSC)
derived, an organoid can be produced directly from patient tissue. Recent advances in organoid technology
have resulted in the ability to generate distinct brain region-like organoids such as forebrain cortex and
hippocampus and to make “fusion” structures with integration of inhibitory and excitatory cell types.
In the following proposal I will leverage these advances and build on an organoid platform that I have
recently developed to model brain circuit formation and dysfunction in epilepsy. Previously, l was able to
recapitulate hyperexcitable electrographic features in organoids derived from a patient with Rett syndrome, a
neurological disorder highly associated with seizures and epilepsy. I have now generated cortical and
hippocampal organoids from hiPSCs harboring mutations in the SCN8A gene. This mutation results in a
severe childhood epilepsy. I have found that the SCN8A mutant cortex organoids have a highly hyperexcitable
pattern of physiological activity compared to controls, whereas the SCN8A mutant hippocampus lacks a
particular type of neural oscillation that is important for memory consolidation called a sharp wave ripple. This
finding suggests that the SCN8A mutation results in different physiological activity patterns in distinct brain
regions. Based on published studies, I hypothesize that this difference is primarily due to dysfunction of
excitatory neurons in the cortex versus inhibitory interneurons in the hippocampus. I will now use an array of
techniques such as calcium indicator imaging, extracellular recordings, immunohistochemistry, and
manipulation of the genetic background of excitatory and inhibitory neurons within the organoid to test this
hypothesis. To increase the rigor and generalizability of my data, I will use hiPSC from three different patients
with pathogenic SCN8A mutations. Finally, I will perform drug testing to further isolate the role of specific cell
types to the observed phenotypes and for consideration as therapeutic agents in patients. I expect that this will
both provide a blueprint for a novel methodology for epilepsy research and enhance our treatment and
understanding of epilepsy and neural circuit dysfunction resulting from SCN8A mutations.
项目总结/摘要
癫痫是一种严重的使人衰弱的疾病,是一个重大的公共卫生问题。癫痫也是一种
没有药物治愈的疾病,以及约三分之一的患者对抗癫痫发作无效的疾病
药物治疗在最严重的癫痫综合征的儿童,药物控制癫痫发作,甚至可以
更具挑战性。新的实验平台有可能在推进我们的研究方面发挥关键作用。
癫痫的治疗方法来源于人胚胎或诱导的脑类器官
多能干细胞就是这样一种具有巨大潜力的新技术。尤其如此
严重的儿童癫痫,因为类器官非常适合模拟早期神经发育。类器官
3D结构重现了人类大脑的复杂元素,如其层状组织和细胞
在人类大脑皮层的六层都有因为它们可以是人诱导多能干细胞(hiPSC),
衍生的,类器官可以直接从患者组织产生。类器官技术的最新进展
已经导致产生不同的脑区域样类器官的能力,例如前脑皮层,
海马并形成抑制性和兴奋性细胞类型整合的“融合”结构。
在下面的提案中,我将利用这些进展,并建立在我拥有的一个类器官平台上。
最近开发的模型脑回路的形成和功能障碍的癫痫。以前,我可以
概括来自Rett综合征患者的类器官的超兴奋电图特征,
与癫痫发作和癫痫高度相关的神经系统疾病。我已经生成了大脑皮层
来自在SCN 8A基因中具有突变的hiPSC的海马类器官。该突变导致
严重的儿童癫痫。我发现SCN 8A突变体皮质类器官具有高度的超兴奋性,
与对照组相比,SCN 8A突变体海马缺乏生理活动模式,而SCN 8A突变体海马缺乏生理活动模式。
一种对记忆巩固很重要的特殊类型的神经振荡,称为尖波涟漪。这
这一发现表明,SCN 8A突变导致不同大脑中不同的生理活动模式
地区根据已发表的研究,我假设这种差异主要是由于
皮质中的兴奋性神经元与海马中的抑制性中间神经元。我现在将使用一个
技术,如钙指示剂成像、细胞外记录、免疫组织化学,
操纵类器官内兴奋性和抑制性神经元的遗传背景来测试这一点。
假说.为了增加我的数据的严谨性和普遍性,我将使用来自三个不同患者的hiPSC
致病性SCN 8A突变最后,我将进行药物测试,以进一步分离特定细胞的作用,
表型与观察到的表型相对应,并考虑作为患者的治疗剂。我希望这将
两者都为癫痫研究的新方法提供了蓝图,并加强了我们的治疗,
了解由SCN 8A突变引起的癫痫和神经回路功能障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RANMAL A SAMARASINGHE其他文献
RANMAL A SAMARASINGHE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RANMAL A SAMARASINGHE', 18)}}的其他基金
Utilizing Human Brain Organoids to Model the Differential Effects of SCN8A Mutation on Cortex and Hippocampus
利用人脑类器官模拟 SCN8A 突变对皮层和海马的不同影响
- 批准号:
10405560 - 财政年份:2021
- 资助金额:
$ 23.78万 - 项目类别:
Utilizing Human Brain Organoids to Model the Differential Effects of SCN8A Mutation on Cortex and Hippocampus
利用人脑类器官模拟 SCN8A 突变对皮层和海马的不同影响
- 批准号:
10301584 - 财政年份:2021
- 资助金额:
$ 23.78万 - 项目类别:
相似海外基金
Novel pediatric anticonvulsants for nerve agents
用于神经毒剂的新型儿科抗惊厥药
- 批准号:
10004277 - 财政年份:2020
- 资助金额:
$ 23.78万 - 项目类别:
Novel pediatric anticonvulsants for nerve agents
用于神经毒剂的新型儿科抗惊厥药
- 批准号:
10475298 - 财政年份:2020
- 资助金额:
$ 23.78万 - 项目类别:
Novel Water-Soluble Adjunct Anticonvulsants for Nerve Agents
用于神经毒剂的新型水溶性辅助抗惊厥药
- 批准号:
10013749 - 财政年份:2020
- 资助金额:
$ 23.78万 - 项目类别:
Novel pediatric anticonvulsants for nerve agents
用于神经毒剂的新型儿科抗惊厥药
- 批准号:
10693904 - 财政年份:2020
- 资助金额:
$ 23.78万 - 项目类别:
Study on how anticonvulsants affect car driving
抗惊厥药如何影响汽车驾驶的研究
- 批准号:
20K17977 - 财政年份:2020
- 资助金额:
$ 23.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Novel Water-Soluble Adjunct Anticonvulsants for Nerve Agents
用于神经毒剂的新型水溶性辅助抗惊厥药
- 批准号:
10266034 - 财政年份:2020
- 资助金额:
$ 23.78万 - 项目类别:
Novel Water-Soluble Adjunct Anticonvulsants for Nerve Agents
用于神经毒剂的新型水溶性辅助抗惊厥药
- 批准号:
10475109 - 财政年份:2020
- 资助金额:
$ 23.78万 - 项目类别:
Novel pediatric anticonvulsants for nerve agents
用于神经毒剂的新型儿科抗惊厥药
- 批准号:
10248384 - 财政年份:2020
- 资助金额:
$ 23.78万 - 项目类别:
Prevention of neuropathic pain by antidepressants and anticonvulsants: in vivo patch-clamp analysis
抗抑郁药和抗惊厥药预防神经性疼痛:体内膜片钳分析
- 批准号:
24592355 - 财政年份:2012
- 资助金额:
$ 23.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Anticonvulsants, ischemic seizures and regeneration in the immature brain
抗惊厥药、缺血性癫痫发作和未成熟大脑的再生
- 批准号:
8492175 - 财政年份:2009
- 资助金额:
$ 23.78万 - 项目类别: