Transcription: Mechanism and Regulation
转录:机制与调控
基本信息
- 批准号:10626739
- 负责人:
- 金额:$ 71.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-10 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:ArchitectureBacteriaBiologicalBiological ModelsCellsCodeComplexDNA SequenceDNA-Directed RNA PolymeraseDevelopmentDiseaseEnvironmentEscherichia coliEukaryotaFutureGene ExpressionGenesGenetic TranscriptionGenomeGrowthIn VitroKnowledgeMeasurementModelingMonitorMutationOrganismRNA chemical synthesisReactionRegulationSignal TransductionSiteSpecific qualifier valueStressSystemTranscriptional RegulationWorkbasedesigndisorder preventionexperimental studyflexibilitygenetic regulatory proteinin vivoinsightmethod developmentpreventresponsetranscription factor
项目摘要
PROJECT SUMMARY/ABSTRACT
The work proposed is designed to understand how gene expression control at the transcriptional level
results from alterations in the activity of RNA polymerase (RNAP). Escherichia coli RNAP serves as an
exceptional model system for mechanistic studies of transcription and as a paradigm for understanding gene
expression in bacteria. Bacteria live in complex, fluctuating environments requiring gene expression to be
highly responsive to changes in growth state or environmental conditions. The expression of a given gene is
determined by contributions from the sequence of the DNA template, regulatory proteins, and reaction
conditions. While the input provided by DNA sequence is “hard-coded” (barring mutational change), the inputs
provided by regulatory factors and reaction conditions are flexible, enabling them to change in response to
alterations in environmental conditions. A multitude of transcription factors and reaction conditions can
modulate gene expression. Thus, changes in gene expression occurring in response to alterations in growth
state or environmental conditions cannot be predicted a priori from DNA sequence alone. Experiments
proposed will enable a systems-level description of the sequence-dependent, factor-dependent, condition-
dependent transcriptional landscape in Escherichia coli. Each step of transcription can be rate limiting, and
thus serve as a potential target of regulation. During the project period, mechanisms of transcriptional control
during initial transcription and elongation, i.e., the stages when RNA synthesis occurs, will be investigated. In
future work, studies will expand to include initiation and termination, using similar approaches. A distinguishing
feature of the work described has been the development of methods to monitor transcription across extensive
sequence space, both in vitro and in vivo. In addition, the flexibility provided by use of E. coli RNAP as a model
system, enables straightforward analysis of the contributions of any transcription factor or reaction condition to
RNAP activity, both in vitro and in vivo. The results of empirical measurements of RNAP activity across
extensive sequence space or across the entire E. coli genome will be integrated into a site- and base-specific
quantitative model describing how RNAP activity is specified by inputs from DNA sequence, transcription
factors, and conditions. The biological knowledge gained will provide an unprecedently rich description of the
architecture of gene expression control in E. coli and provide the basis for extending this approach to other
organisms, including eukaryotes.
项目概要/摘要
拟议的工作旨在了解转录水平上的基因表达控制
RNA 聚合酶 (RNAP) 活性改变的结果。大肠杆菌 RNAP 作为
用于转录机制研究和理解基因的范例的特殊模型系统
在细菌中表达。细菌生活在复杂、波动的环境中,需要基因表达
对生长状态或环境条件的变化高度敏感。给定基因的表达量为
由 DNA 模板序列、调节蛋白和反应的贡献决定
状况。虽然 DNA 序列提供的输入是“硬编码的”(除非发生突变),但输入
调节因素和反应条件提供的灵活性,使其能够响应变化
环境条件的变化。多种转录因子和反应条件可以
调节基因表达。因此,基因表达的变化是响应生长变化而发生的。
仅凭 DNA 序列无法先验地预测状态或环境条件。实验
所提出的将能够对序列相关、因素相关、条件相关的系统级描述成为可能。
大肠杆菌中的依赖性转录景观。转录的每个步骤都可以进行速率限制,并且
从而成为潜在的监管目标。项目期间,转录控制机制
将研究初始转录和延伸期间,即发生 RNA 合成的阶段。在
在未来的工作中,研究将使用类似的方法扩展到包括启动和终止。一个有特色的
所描述的工作的特点是开发了广泛监测转录的方法
体外和体内的序列空间。此外,使用大肠杆菌 RNAP 作为模型提供了灵活性
系统,可以直接分析任何转录因子或反应条件的贡献
RNAP 活性,体外和体内。 RNAP 活性的经验测量结果
广泛的序列空间或整个大肠杆菌基因组将被整合到位点和碱基特异性
定量模型描述 RNAP 活性如何通过 DNA 序列、转录的输入来指定
因素、条件。获得的生物学知识将为生物提供前所未有的丰富描述。
大肠杆菌中基因表达控制的体系结构,并为将该方法扩展到其他方法提供基础
生物体,包括真核生物。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
XACT-seq: A photocrosslinking-based technique for detection of the RNA polymerase active-center position relative to DNA in Escherichia coli.
- DOI:10.1016/j.xpro.2021.100858
- 发表时间:2021-12-17
- 期刊:
- 影响因子:0
- 作者:Pukhrambam C;Vvedenskaya IO;Nickels BE
- 通讯作者:Nickels BE
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bryce Edward Nickels其他文献
Bryce Edward Nickels的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bryce Edward Nickels', 18)}}的其他基金
相似国自然基金
Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
- 批准号:81971557
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
- 批准号:51678163
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
EAGER: Developing Biological drones for attacking targeted bacteria
EAGER:开发攻击目标细菌的生物无人机
- 批准号:
2222345 - 财政年份:2022
- 资助金额:
$ 71.37万 - 项目类别:
Standard Grant
Chemical & Biological Interception of Cell-Cell Communication in Gram-Positive Bacteria
化学
- 批准号:
2108511 - 财政年份:2021
- 资助金额:
$ 71.37万 - 项目类别:
Standard Grant
Deriving biological principles from replication initiation control in bacteria
从细菌复制起始控制中得出生物学原理
- 批准号:
2016090 - 财政年份:2020
- 资助金额:
$ 71.37万 - 项目类别:
Standard Grant
Cultivation and molecular biological analysis of copper reducing bacteria as for a copper recycling from low-grade metal ore
低品位金属矿石回收铜还原菌的培养及分子生物学分析
- 批准号:
20K05407 - 财政年份:2020
- 资助金额:
$ 71.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidating the biological mechanisms underlying the motility of flagellated bacteria by understanding torque generation
通过了解扭矩的产生来阐明有鞭毛细菌运动的生物学机制
- 批准号:
2741993 - 财政年份:2020
- 资助金额:
$ 71.37万 - 项目类别:
Studentship
Metabolic engineering and synthetic biological utilization of coryneform bacteria aiming to expand its versatility as a production host
棒状细菌的代谢工程和合成生物利用,旨在扩大其作为生产宿主的多功能性
- 批准号:
19K15736 - 财政年份:2019
- 资助金额:
$ 71.37万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Biological Control of Dengue Disease Using Symbiotic Wolbachia Bacteria: Environmentally Safe and Inexpensive Approach
使用共生沃尔巴克氏菌生物控制登革热:环境安全且廉价的方法
- 批准号:
19KK0107 - 财政年份:2019
- 资助金额:
$ 71.37万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Establishment of a biological method to treat 1,4-dioxane in landfill leachate by selective enrichment and activation of indigenous 1,4-dioxane-degrading bacteria
通过选择性富集和活化本土1,4-二恶烷降解菌建立处理垃圾渗滤液中1,4-二恶烷的生物方法
- 批准号:
19H04301 - 财政年份:2019
- 资助金额:
$ 71.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidation of biological impacts on host plants by gut bacteria of tephritid fruit flies
阐明实蝇肠道细菌对宿主植物的生物学影响
- 批准号:
18K19217 - 财政年份:2018
- 资助金额:
$ 71.37万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Preparation of gnotobiotic marine earthworm for pollutant decomposition and analysis of biological functions of endogenous bacteria
污染物分解用知生海洋蚯蚓的制备及内源细菌生物学功能分析
- 批准号:
17K20075 - 财政年份:2017
- 资助金额:
$ 71.37万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)